

The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 19.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines. US&CA: https://submittals.us.hilti.com/PTGVol2/

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST. US: 877-749-6337 or <u>HNATechnicalServices@hilti.com</u> CA: 1-800-363-4458, ext. 6 or <u>CATechnicalServices@hilti.com</u>

1-800-879-8000 www.hilti.com

3.2.3 HIT-RE 500 V3 EPOXY ADHESIVE ANCHORING SYSTEM PRODUCT DESCRIPTION

HIT-RE 500 V3 with Threaded Rod, Rebar, and HIS-N/RN Inserts

Contact Hilti for various states

Department of Transportation

MATERIAL SPECIFICATIONS

Table 1 - Material properties of fully cured Hilti HIT-RE 500 V3

Bond Strength ASTM C882-13A ¹ 2 day cure 14 day cure	10.8 MPa 11.7 MPa	1,560 psi 1,690 psi
Compressive Strength ASTM D695-101	82.7 MPa	12,000 psi
Compressive Modulus ASTM D695-101	2,600 MPa	0.38 x 10 ⁶ psi
Tensile Strength 7 day ASTM D638-14	49.3 MPa	7,150 psi
Elongation at break ASTM D638-14	1.1%	1.1%
Heat Deflection Temperature ASTM D648-07	50°C	122°F
Absorption ASTM D570-98	0.18%	0.18%
Linear Coefficient of Shrinkage on Cure ASTM D2566-86	0.008	0.008

1 Minimum values obtained as the result of tests at 35°F, 50°F, 75°F and 110°F.

Material specifications for Hilti threaded rods and Hilti HIS-N inserts are listed in section 3.2.8.

DESIGN DATA IN CONCRETE FOR ACI 318

ACI 318-14 Chapter 17 design

The load values contained in this section are Hilti Simplified Design Tables. The load tables in this section were developed using the strength design parameters and variables of ESR-3814 and the equations within ACI 318-14 Chapter 17. For a detailed explanation of the Hilti Simplified Design Tables, refer to Section 3.1.8. Data tables from ESR-3814 are not contained in this section, but can be found at www.icc-es.org or at www.hilti.com.

HIT-RE 500 V3 adhesive with deformed reinforcing bars (rebar)

Figure 1 - Rebar installed with Hilti HIT-RE 500 V3 adhesive

Cracked o	r uncracked concrete	Permis	ssible drilling methods	Permissib	le concrete conditions
					Dry concrete
		~~~~	Hammer drilling		Water-saturated concrete
	Cracked and		with carbide-tipped drill bit	θ	Water-filled holes
	uncracked concrete				Submerged (underwater)
			Hilti TE-CD or TE-YD hollow drill bit and VC 20/40 vacuum		Dry concrete
			Diamond core drill bit with Hilti TE-YRT roughening tool		Water-saturated concrete
					Dry concrete
	Uncracked concrete	لر الل الح	Diamond core drill bit		Water-saturated concrete

#### Figure 2 - Rebar installed with Hilti HIT-RE 500 V3 adhesive



#### Table 2 - Specifications for rebar installed with Hilti HIT-RE 500 V3 adhesive

Cotting information		Cumbal	Linita				Reba	ır size			
Setting mornation		Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Nominal bit diamete	r	d _。	in.	1/2	5/8	3/4	7/8	1	1-1/8	1-3/8	1-1/2
	minimum	h	in.	2-3/8	2-3/8	3	3	3-3/8	4	4-1/2	5
Effective embedment	minimum	ef,min	(mm)	(60)	(60)	(76)	(76)	(85)	(102)	(114)	(127)
		h	in.	7-1/2	10	12-1/2	15	17-1/2	20	22-1/2	25
	maximum	f ef,max	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
Minimum concrete r	nember thickness	h	in.	h _{ef} +	1-1/4			(h +	2d)		
	nember thickness	' 'min	(mm)	(h _{ef} ⊦	+ 30)			(H _{ef} '	2u _o )		
Minimum odgo dioto	noo ¹		in.	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	5-5/8	6-1/4
Minimum edge dista	nce	C _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
Minimum anabar and			in.	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	5-5/8	6-1/4
Minimum anchor spa	acing	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)

1 Edge distance of 1-3/4-inch (44mm) is permitted provided the rebar remains un-torqued.

**Note:** The installation specifications in table 2 above and the data in tables 3 through 23 pertain to the use of Hilti HIT-RE 500 V3 with rebar designed as a post-installed anchor using the provisions of ACI 318-14 Chapter 17. For the use of Hilti HIT-RE 500 V3 with rebar for typical development calculations according to ACI 318-14 Chapter 25 (formerly ACI 318-11 Chapter 12), refer to section 3.1.14 for the design method and tables 83 through 87 in section 3.2.4.3.8.

#### Table 3 - Hilti HIT-RE 500 V3 adhesive design strength with concrete / bond failure for US rebar in uncracked concrete 1,2,3,4,5,6,7,8,9,11

			Tension	— фN _n			Shear	— фV _n	
	Effective	f', = 2,500 psi	f', = 3,000 psi	f', = 4,000 psi	f'_ = 6,000 psi	f', = 2,500 psi	f', = 3,000 psi	f', = 4,000 psi	f', = 6,000 psi
	embedment	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)
Rebar size	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
	3-3/8	4,575	4,790	5,145	5,695	9,855	10,310	11,080	12,265
	(86)	(20.4)	(21.3)	(22.9)	(25.3)	(43.8)	(45.9)	(49.3)	(54.6)
"0	4-1/2	6,100	6,385	6,860	7,590	13,135	13,750	14,775	16,350
#3	(114)	(27.1)	(28.4)	(30.5)	(33.8)	(58.4)	(61.2)	(65.7)	(72.7)
	7-1/2	10,165	10,640	11,435	12,655	21,895	22,915	24,625	27,250
	(191)	(45.2)	(47.3)	(50.9)	(56.3)	(97.4)	(101.9)	(109.5)	(121.2)
	4-1/2	7,445	8,155	8,990	9,950	16,035	17,570	19,365	21,430
	(114)	(33.1)	(36.3)	(40.0)	(44.3)	(71.3)	(78.2)	(86.1)	(95.3)
#1	6	10,660	11,155	11,990	13,265	22,960	24,030	25,820	28,575
<i>π</i> -4	(152)	(47.4)	(49.6)	(53.3)	(59.0)	(102.1)	(106.9)	(114.9)	(127.1)
	10	17,765	18,595	19,980	22,110	38,265	40,050	43,035	47,625
	(254)	(79.0)	(82.7)	(88.9)	(98.3)	(170.2)	(178.2)	(191.4)	(211.8)
	5-5/8	10,405	11,400	13,165	15,370	22,415	24,550	28,350	33,105
	(143)	(46.3)	(50.7)	(58.6)	(68.4)	(99.7)	(109.2)	(126.1)	(147.3)
#5 ¹⁰	7-1/2	16,020	17,230	18,515	20,490	34,505	37,115	39,880	44,135
	(191)	(71.3)	(76.6)	(82.4)	(91.1)	(153.5)	(165.1)	(177.4)	(196.3)
	12-1/2	27,440	28,720	30,860	34,155	59,100	61,855	66,470	73,560
	(318)	(122.1)	(127.8)	(137.3)	(151.9)	(262.9)	(275.1)	(295.7)	(327.2)
	6-3/4	13,680	14,985	17,305	21,190	29,460	32,275	37,265	45,645
	(1/1)	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	(165.8)	(203.0)
#6 ¹⁰	(220)	21,060	23,070	26,200	28,995	45,360	49,690	56,430	62,450
	(229)	(93.7)	(102.6)	(116.5)	(129.0)	(201.6)	(221.0)	(251.0)	104.090
	(381)	(172 7)	(180.8)	(194.2)	(215.0)	(372 0)	(389.3)	(418.3)	(463.0)
	7-7/8	17 235	18 885	21.805	26 705	37 125	40.670	46 960	57 515
	(200)	(76.7)	(84 0)	(97.0)	(118.8)	(165.1)	(180.9)	(208.9)	(255.8)
	10-1/2	26.540	29.070	33.570	38,995	57.160	62.615	72.300	83.995
#7 ¹⁰	(267)	(118.1)	(129.3)	(149.3)	(173.5)	(254.3)	(278.5)	(321.6)	(373.6)
	17-1/2	52,220	54,655	58,730	64,995	112,470	117,715	126,495	139,990
	(445)	(232.3)	(243.1)	(261.2)	(289.1)	(500.3)	(523.6)	(562.7)	(622.7)
	9	21,060	23,070	26,640	32,625	45,360	49,690	57,375	70,270
	(229)	(93.7)	(102.6)	(118.5)	(145.1)	(201.8)	(221.0)	(255.2)	(312.6)
<b>#0</b> 10	12	32,425	35,520	41,015	50,020	69,835	76,500	88,335	107,735
#0	(305)	(144.2)	(158.0)	(182.4)	(222.5)	(310.6)	(340.3)	(392.9)	(479.2)
	20	66,980	70,100	75,330	83,365	144,260	150,990	162,250	179,560
	(508)	(297.9)	(311.8)	(335.1)	(370.8)	(641.7)	(671.6)	(721.7)	(798.7)
	10-1/8	25,130	27,530	31,785	38,930	54,125	59,290	68,465	83,850
	(257)	(111.8)	(122.5)	(141.4)	(173.2)	(240.8)	(263.7)	(304.5)	(373.0)
<b>#9</b> ¹⁰	13-1/2	38,690	42,380	48,940	59,940	83,330	91,285	105,405	129,095
-	(343)	(172.1)	(188.5)	(217.7)	(266.6)	(370.7)	(406.1)	(468.9)	(574.2)
	22-1/2	83,245	87,640	94,175	104,225	179,300	188,765	202,840	224,480
	(572)	(370.3)	(389.8)	(418.9)	(463.6)	(797.6)	(839.7)	(902.3)	(998.5)
	11-1/4	29,430	32,240	37,230	45,595	63,395	69,445	80,185	98,205
	(286)	(130.9)	(143.4)	(165.6)	(202.8)	(282.0)	(308.9)	(356.7)	(436.8)
#10	15	45,315	49,640	57,320	70,200	97,600	106,915	123,455	151,200
	(381)	(201.6)	(220.8)	(255.0)	(312.3)	(434.1)	(475.6)	(549.2)	(672.6)
	25	97,500	106,195	114,115	126,290	210,000	228,730	245,785	272,005
	(635)	(433.7)	(472.4)	(507.6)	(561.8)	(934.1)	(1017.4)	(1093.3)	(1209.9)

See Section 3.1.8 for explanation on development of load values. 1

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Apply spacing, edge distance, and concrete thickness factors in tables 8-23 as necessary to the above values. Compare to the steel values in table 7. The lesser of the values is to be used for the design. 4

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Tabular values are for dry concrete and water-saturated concrete conditions. 6 For water-filled drilled holes multiply design strength by 0.51.

For submerged (under water) applications multiply design strength by 0.45.

Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8. 7

8

Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda a$  as follows: For sand-lightweight,  $\lambda a = 0.51$ . For all-lightweight,  $\lambda a = 0.45$ . Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. For diamond core drilling, except as indicated in note 10, multiply above values 9 by 0.55.

Diamond core drilling is not permitted for the water-filled or under-water (submerged) applications. 10 Diamond core drilling with the Hilti TE-YRT roughening tool is permitted for #5, #6, #7, #8, and #9 rebar in dry and water-saturated concrete. See Table 5

11 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.



#### Table 4 - Hilti HIT-RE 500 V3 adhesive design strength with concrete / bond failure for US rebar in cracked concrete^{1,2,3,4,5,6,7,8,9,11}

			Tension	μ — φΝ _n			Shear	— фV _n	
	Effective	f' = 2.500 psi	f' = 3.000 psi	f' = 4.000 psi	f' = 6.000 psi	f' = 2.500 psi	f' = 3.000 psi	f' = 4.000 psi	f' = 6.000 psi
	embedment	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)
Rebar size	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
	3-3/8	3,425	3,585	3,745	3,980	7,380	7,725	8,065	8,570
	(86)	(15.2)	(15.9)	(16.7)	(17.7)	(32.8)	(34.4)	(35.9)	(38.1)
#2	4-1/2	4,650	4,780	4,990	5,305	10,020	10,300	10,750	11,425
#0	(114)	(20.7)	(21.3)	(22.2)	(23.6)	(44.6)	(45.8)	(47.8)	(50.8)
	7-1/2	7,755	7,970	8,320	8,840	16,700	17,165	17,920	19,045
	(191)	(34.5)	(35.5)	(37.0)	(39.3)	(74.3)	(76.4)	(79.7)	(84.7)
	4-1/2	5,275	5,780	6,670	7,125	11,360	12,445	14,370	15,345
	(114)	(23.5)	(25.7)	(29.7)	(31.7)	(50.5)	(55.4)	(63.9)	(68.3)
#4	6	8,120	8,560	8,940	9,500	17,490	18,440	19,255	20,465
	(152)	(36.1)	(38.1)	(39.8)	(42.3)	(77.8)	(82.0)	(85.7)	(91.0)
	10	13,885	14,270	14,900	15,835	29,910	30,735	32,095	34,105
	(254)	(61.8)	(63.5)	(66.3)	(70.4)	(133.0)	(136.7)	(142.8)	(151.7)
	5-5/8	7,370	8,075	9,325	11,380	15,875	17,390	20,080	24,510
	(143)	(32.8)	(35.9)	(41.5)	(50.6)	(70.6)	(77.4)	(89.3)	(109.0)
#5 ¹⁰	(101)	(50.5)	12,430	14,275	15,170	24,440	26,775	30,750	32,680
	(191)	(50.5)	(33.3)	(03.3)	(07.3)	(106.7)	(119.1)	(130.0)	(145.4)
	(318)	(08.6)	(101 4)	(105.8)	(112.5)	(212.4)	(218.3)	(228.0)	(242.2)
	6-3/4	9 690	10.615	12 255	15 010	20.870	22 860	26 395	32 330
	(171)	(43.1)	(47.2)	(54.5)	(66.8)	(92.8)	(101 7)	(117.4)	(143.8)
	9	14.920	16.340	18,870	22,160	32,130	35,195	40.640	47,735
#6 ¹⁰	(229)	(66.4)	(72.7)	(83.9)	(98.6)	(142.9)	(156.6)	(180.8)	(212.3)
	15	32.095	33.290	34.760	36.935	69.135	71.700	74.865	79.560
#6 ¹⁰	(381)	(142.8)	(148.1)	(154.6)	(164.3)	(307.5)	(318.9)	(333.0)	(353.9)
	7-7/8	12,210	13,375	15,445	18,915	26,300	28,810	33,265	40,740
	(200)	(54.3)	(59.5)	(68.7)	(84.1)	(117.0)	(128.2)	(148.0)	(181.2)
<i></i> <b>→</b> 10	10-1/2	18,800	20,590	23,780	29,120	40,490	44,355	51,215	62,725
#/10	(267)	(83.6)	(91.6)	(105.8)	(129.5)	(180.1)	(197.3)	(227.8)	(279.0)
	17-1/2	40,445	44,310	47,310	50,275	87,115	95,430	101,895	108,285
	(445)	(179.9)	(197.1)	(210.4)	(223.6)	(387.5)	(424.5)	(453.2)	(481.7)
	9	14,920	16,340	18,870	23,110	32,130	35,195	40,640	49,775
	(229)	(66.4)	(72.7)	(83.9)	(102.8)	(142.9)	(156.6)	(180.8)	(221.4)
#8 ¹⁰	12	22,965	25,160	29,050	35,580	49,465	54,190	62,570	76,635
	(305)	(102.2)	(111.9)	(129.2)	(158.3)	(220.0)	(241.0)	(278.3)	(340.9)
	20	49,415	54,135	62,230	66,130	106,435	116,595	134,035	142,440
	(508)	(219.8)	(240.8)	(276.8)	(294.2)	(473.4)	(518.6)	(596.2)	(633.6)
	10-1/8	17,800	19,500	22,515	27,575	38,340	42,000	48,495	59,395
	(257)	(79.2)	(86.7)	(100.2)	(122.7)	(170.5)	(186.8)	(215.7)	(264.2)
#9 ¹⁰	13-1/2	27,405	30,020	34,665	42,455	59,025	64,660	74,665	91,445
	(343)	(121.9)	(133.5)	(154.2)	(188.8)	(262.6)	(287.6)	(332.1)	(406.8)
	(570)	58,965	04,595	(4,585	81,930	127,005	139,125	100,650	170,405
	(572)	(202.3)	(287.3)	(331.8)	(304.4)	(564.9)	40,100	(/14.0)	(785.0)
	(296)	20,000	(101 6)	20,370	(142 7)	(100 7)	(010 0)	(050.7)	(200 4)
	(200)	32.095	35 160	40.600	/143.7)	69 135	75 730	87.445	107 100
#10	(381)	(142 8)	(156 /)	(180 6)	(221 2)	(307 5)	(336 0)	(380 0)	(476 /)
	25	69.060	75 655	87,360	97,510	148 750	162 945	188 155	210 020
	(635)	(307.2)	(336.5)	(388.6)	(433.7)	(661.7)	(724.8)	(837 0)	(934 2)
	(/		(/	(=====)	(,	(/	(. =	(/	(/

See Section 3.1.8 for explanation on development of load values. 1 2

See Section 3.1.8 to convert design strength value to ASD value. Linear interpolation between embedment depths and concrete compressive strengths is not permitted. 3

Apply spacing, edge distance, and concrete thickness factors in tables 8-23 as necessary to the above values. Compare to the steel values in table 7. 4

The lesser of the values is to be used for the design.

5

Data is for temperature range A: Max. short term temperature =  $130^{\circ}F$  (55°C), max. long term temperature =  $110^{\circ}F$  (43°C). For temperature range B: Max. short term temperature =  $176^{\circ}F$  (80°C), max. long term temperature =  $110^{\circ}F$  (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Tabular values are for dry concrete and water-saturated concrete conditions. 6

For water-filled drilled holes multiply design strength by 0.51.

For submerged (under water) applications multiply design strength by 0.45. Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8. Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda_a$  as follows: 8

For sand-lightweight,  $\lambda_1 = 0.51$ . For all-lightweight,  $\lambda_2 = 0.45$ . Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. Diamond core drilling is not permitted in cracked concrete except as indicated in 9 note 10.

10 Diamond core drilling with the Hilti TE-YRT roughening tool is permitted for #5, #6, #7, #8, and #9 rebar in dry and water-saturated concrete. See Table 6 11 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by  $\alpha_{seis}$  = 0.68. See section 3.1.8 for additional information on seismic applications.

			Tension	— фN _п			Shear	— фV _n	
Rebar size	Effective embedment in. (mm)	f' _c = 2,500 psi (17.2 MPa) Ib (kN)	f' _c = 3,000 psi (20.7 MPa) Ib (kN)	f' _c = 4,000 psi (27.6 MPa) Ib (kN)	f [′] _c = 6,000 psi (41.4 MPa) Ib (kN)	f' _c = 2,500 psi (17.2 MPa) Ib (kN)	f' _c = 3,000 psi (20.7 MPa) Ib (kN)	f' _c = 4,000 psi (27.6 MPa) Ib (kN)	f' _c = 6,000 psi (41.4 MPa) Ib (kN)
	5-5/8	10,405	11,400	12,350	12,350	22,415	24,550	26,595	26,595
	(143)	(46.3)	(50.7)	(54.9)	(54.9)	(99.7)	(109.2)	(118.3)	(118.3)
	7-1/2	16,020	16,465	16,465	16,465	34,505	35,460	35,460	35,460
#5	(191)	(71.3)	(73.2)	(73.2)	(73.2)	(153.5)	(157.7)	(157.7)	(157.7)
	12-1/2	27,440	27,440	27,440	27,440	59,100	59,100	59,100	59,100
	(318)	(122.1)	(122.1)	(122.1)	(122.1)	(262.9)	(262.9)	(262.9)	(262.9)
	6-3/4	13,680	14,985	17,305	17,470	29,460	32,275	37,265	37,630
	(171)	(60.9)	(66.7)	(77.0)	(77.7)	(131.0)	(143.6)	(165.8)	(167.4)
"0	9	21,060	23,070	23,295	23,295	45,360	49,690	50,175	50,175
#6	(229)	(93.7)	(102.6)	(103.6)	(103.6)	(201.8)	(221.0)	(223.2)	(223.2)
	11-1/4	29,120	29,120	29,120	29,120	62,715	62,715	62,715	62,715
	(286)	(129.5)	(129.5)	(129.5)	(129.5)	(279.0)	(279.0)	(279.0)	(279.0)
	7-7/8	17,235	18,885	21,805	23,500	37,125	40,670	46,960	50,610
	(200)	(76.7)	(84.0)	(97.0)	(104.5)	(165.1)	(180.9)	(208.9)	(225.1)
# <b>7</b>	10-1/2	26,540	29,070	31,330	31,330	57,160	62,615	67,485	67,485
#1	(267)	(118.1)	(129.3)	(139.4)	(139.4)	(254.3)	(278.5)	(300.2)	(300.2)
	17-1/2	52,220	52,220	52,220	52,220	112,470	112,470	112,470	112,470
	(445)	(232.3)	(232.3)	(232.3)	(232.3)	(500.3)	(500.3)	(500.3)	(500.3)
	9	21,060	23,070	26,640	30,140	45,360	49,690	57,375	64,920
	(229)	(93.7)	(102.6)	(118.5)	(134.1)	(201.8)	(221.0)	(255.2)	(288.8)
#0	12	32,425	35,520	40,185	40,185	69,835	76,500	86,555	86,555
#0	(305)	(144.2)	(158.0)	(178.8)	(178.8)	(310.6)	(340.3)	(385.0)	(385.0)
	20	66,980	66,980	66,980	66,980	144,260	144,260	144,260	144,260
	(508)	(297.9)	(297.9)	(297.9)	(297.9)	(641.7)	(641.7)	(641.7)	(641.7)
	10-1/8	25,130	27,530	31,785	37,680	54,125	59,290	68,465	81,160
	(257)	(111.8)	(122.5)	(141.4)	(167.6)	(240.8)	(263.7)	(304.5)	(361.0)
<b>#0</b>	13-1/2	38,690	42,380	48,940	50,240	83,330	91,285	105,405	108,215
#9	(343)	(172.1)	(188.5)	(217.7)	(223.5)	(370.7)	(406.1)	(468.9)	(481.4)
	22-1/2	83,245	83,735	83,735	83,735	179,300	180,355	180,355	180,355
	(572)	(370.3)	(372.5)	(372.5)	(372.5)	(797.6)	(802.3)	(802.3)	(802.3)

#### Table 5 - Hilti HIT-RE 500 V3 for Core Drilled Holes with TE-YRT Roughening Tool adhesive design strength with concrete / bond failure for US rebar in uncracked concrete^{1,2,3,4,5,6,7,8,9}

See Section 3.1.8 for explanation on development of load values. 1

See Section 3.1.8 to convert design strength value to ASD value. 2

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 8 - 23 as necessary to the above values. Compare to the steel values in table 7.

5

The lesses of the values is to be used for the design. Data is for temperature range A: Max. short term temperature =  $130^{\circ}F$  (55°C), max. long term temperature =  $110^{\circ}F$  (43°C). For temperature range B: Max. short term temperature =  $176^{\circ}F$  (80°C), max. long term temperature =  $110^{\circ}F$  (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly Constant over significant periods of time. Tabular values are for dry concrete and water-saturated concrete conditions. Water-filled and submerged (under water) applications are not permitted for this hole preparation method.

6

Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda_a$  as follows:

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ . Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. 9



			Tension	ι — φΝ _n			Shear	— фV _n	
Rebar size	Effective embedment in. (mm)	f' _c = 2,500 psi (17.2 MPa) Ib (kN)	f' _c = 3,000 psi (20.7 MPa) Ib (kN)	f' _c = 4,000 psi (27.6 MPa) Ib (kN)	f' _c = 6,000 psi (41.4 MPa) Ib (kN)	f' _c = 2,500 psi (17.2 MPa) Ib (kN)	f' _c = 3,000 psi (20.7 MPa) Ib (kN)	f [′] _c = 4,000 psi (27.6 MPa) Ib (kN)	f' _c = 6,000 psi (41.4 MPa) Ib (kN)
	5-5/8	6,965	6,965	6,965	6,965	15,000	15,000	15,000	15,000
	(143)	(31.0)	(31.0)	(31.0)	(31.0)	(66.7)	(66.7)	(66.7)	(66.7)
	7-1/2	9,285	9,285	9,285	9,285	20,000	20,000	20,000	20,000
#5	(191)	(41.3)	(41.3)	(41.3)	(41.3)	(89.0)	(89.0)	(89.0)	(89.0)
	12-1/2	15,475	15,475	15,475	15,475	33,330	33,330	33,330	33,330
	(318)	(68.8)	(68.8)	(68.8)	(68.8)	(148.3)	(148.3)	(148.3)	(148.3)
	6-3/4	9,690	10,235	10,235	10,235	20,870	22,045	22,045	22,045
	(171)	(43.1)	(45.5)	(45.5)	(45.5)	(92.8)	(98.1)	(98.1)	(98.1)
# <b>C</b>	9	13,645	13,645	13,645	13,645	29,390	29,390	29,390	29,390
#0	(229)	(60.7)	(60.7)	(60.7)	(60.7)	(130.7)	(130.7)	(130.7)	(130.7)
	11-1/4	17,055	17,055	17,055	17,055	36,740	36,740	36,740	36,740
	(286)	(75.9)	(75.9)	(75.9)	(75.9)	(163.4)	(163.4)	(163.4)	(163.4)
	7-7/8	12,210	13,375	13,930	13,930	26,300	28,810	30,005	30,005
	(200)	(54.3)	(59.5)	(62.0)	(62.0)	(117.0)	(128.2)	(133.5)	(133.5)
#7	10-1/2	18,575	18,575	18,575	18,575	40,005	40,005	40,005	40,005
#7	(267)	(82.6)	(82.6)	(82.6)	(82.6)	(178.0)	(178.0)	(178.0)	(178.0)
	17-1/2	30,955	30,955	30,955	30,955	66,675	66,675	66,675	66,675
	(445)	(137.7)	(137.7)	(137.7)	(137.7)	(296.6)	(296.6)	(296.6)	(296.6)
	9	14,920	16,340	18,285	18,285	32,130	35,195	39,385	39,385
	(229)	(66.4)	(72.7)	(81.3)	(81.3)	(142.9)	(156.6)	(175.2)	(175.2)
#9	12	22,965	24,380	24,380	24,380	49,465	52,515	52,515	52,515
#0	(305)	(102.2)	(108.4)	(108.4)	(108.4)	(220.0)	(233.6)	(233.6)	(233.6)
	20	40,635	40,635	40,635	40,635	87,525	87,525	87,525	87,525
	(508)	(180.8)	(180.8)	(180.8)	(180.8)	(389.3)	(389.3)	(389.3)	(389.3)
	10-1/8	17,800	19,500	22,515	22,560	38,340	42,000	48,495	48,595
	(257)	(79.2)	(86.7)	(100.2)	(100.4)	(170.5)	(186.8)	(215.7)	(216.2)
#0	13-1/2	27,405	30,020	30,085	30,085	59,025	64,660	64,795	64,795
#9	(343)	(121.9)	(133.5)	(133.8)	(133.8)	(262.6)	(287.6)	(288.2)	(288.2)
	22-1/2	50,140	50,140	50,140	50,140	107,990	107,990	107,990	107,990
	(572)	(223.0)	(223.0)	(223.0)	(223.0)	(480.4)	(480.4)	(480.4)	(480.4)

#### Table 6 - Hilti HIT-RE 500 V3 for Core Drilled Holes with TE-YRT Roughening Tool adhesive design strength with concrete / bond failure for US rebar in cracked concrete^{1,2,3,4,5,6,7,8,9}

See Section 3.1.8 for explanation on development of load values. 1

2

See Section 3.1.8 to convert design strength value to ASD value. Linear interpolation between embedment depths and concrete compressive strengths is not permitted. 3

4 Apply spacing, edge distance, and concrete thickness factors in tables 8 - 23 as necessary to the above values. Compare to the steel values in table 7.

5

The lesser of the values is to be used for the design. Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6

Tabular values are for dry concrete and water-saturated concrete conditions. Water-filled and submerged (under water) applications are not permitted for this hole preparation method. Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8. 8

Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows:

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ . Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by  $\alpha_{seis} = 0.68$ . See section 3.1.8 for additional information on seismic applications. 9

#### Table 7 - Steel design strength for US rebar¹

	AS	TM A 615 Grade	40 ²	AS	TM A 615 Grade	60 ²	AS	TM A 706 Grade	e 60²
Rebar size	Tensile ³ φN _{sa} Ib (kN)	Shear⁴ φV _{sa} Ib (kN)	Seismic Shear⁵ φV _{sa,eq} Ib (kN)	Tensile ³ φN _{sa} Ib (kN)	Shear⁴ φV _{sa} Ib (kN)	Seismic Shear⁵ φV _{sa,eq} Ib (kN)	Tensile³ φN _{sa} Ib (kN)	Shear⁴ φV _{sa} Ib (kN)	Seismic Shear⁵ ¢V _{sa,eq} Ib (kN)
#3	4,290 (19.1)	2,375 (10.6)	1,665 (7.4)	6,435 (28.6)	3,565 (15.9)	2,495 (11.1)	6,600 (29.4)	3,430 (15.3)	2,400 (10.7)
#4	(1017)         (1017)         (117)           7,800         4,320         3,025           (34.7)         (19.2)         (13.5)           12,090         6,695         4,685           (53.8)         (29.8)         (20.8)			11,700 (52.0)	6,480 (28.8)	4,535 (20.2)	12,000 (53.4)	6,240 (27.8)	4,370 (19.4)
#5	12,090 (53.8)	6,695 (29.8)	4,685 (20.8)	18,135 (80.7)	10,045 (44.7)	7,030 (31.3)	18,600 (82.7)	9,670 (43.0)	6,770 (30.1)
#6	17,160 (76.3)	9,505 (42.3)	6,655 (29.6)	25,740 (114.5)	14,255 (63.4)	9,980	26,400 (117.4)	13,730 (61.1)	9,610 (42.7)
#7	23,400 (104.1)	12,960 (57.6)	9,070 (40.3)	35,100 (156.1)	19,440 (86.5)	13,610 (60.5)	36,000 (160.1)	18,720 (83.3)	13,105 (58.3)
#8	30,810 (137.0)	17,065 (75.9)	11,945 (53.1)	46,215 (205.6)	25,595 (113.9)	17,915 (79.7)	47,400 (210.8)	24,650 (109.6)	17,255 (76.8)
#9	39,000 (173.5)	21,600 (96.1)	15,120 (67.3)	58,500 (260.2)	32,400 (144.1)	22,680 (100.9)	60,000 (266.9)	31,200 (138.8)	21,840 (97.1)
#10	49,530	27,430 (122.0)	19,200 (85.4)	74,295	41,150 (183.0)	28,805	76,200	39,625 (176.3)	27,740 (123.4)

1 See Section 3.1.8 to convert design strength value to ASD value. 2 ASTM A706 Grade 60 rebar are considered ductile steel elements. ASTM A 615 Grade 40 and 60 rebar are considered brittle steel elements. 3 Tensile =  $\phi A_{geN} f_{ula}$  as noted in ACI 318-14 Chapter 17 4 Shear =  $\phi 0.60 A_{geN} f_{ula}$  as noted in ACI 318-14 Chapter 17 5 Seismic Shear =  $\alpha_{v_{seis}} \phi V_{sa}$ . Reduction for seismic shear only. See section 3.1.8 for additional information on seismic applications.

3.2.3



													Edg	je distar	nce in sh	iear				
			Spa	acing fac	ctor	Edge of	distance	factor	Spa	acing fac	ctor				To	o and av	vay	Conc	rete thic	kness
	#3		i	n tensio	n	i	n tensio	n	i	in shear	1	То	ward ed	ge	fr	om edg	е	fac	tor in sh	ear⁵
uncra	cked co	ncrete		$f_{AN}$			$f_{_{\rm RN}}$			$f_{AV}$			$f_{_{\rm RV}}$			$f_{\rm RV}$			$f_{_{\rm HV}}$	
Embe	dment	in.	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2
ł	n _{ef}	(mm)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)
(u	1-3/4	(44)	n/a	n/a	n/a	0.29	0.22	0.13	n/a	n/a	n/a	0.07	0.06	0.03	0.15	0.11	0.07	n/a	n/a	n/a
m	1-7/8	(48)	0.59	0.57	0.54	0.30	0.22	0.13	0.53	0.53	0.52	0.08	0.06	0.04	0.17	0.12	0.07	n/a	n/a	n/a
г	2	(51)	0.59	0.57	0.54	0.31	0.23	0.13	0.53	0.53	0.52	0.09	0.07	0.04	0.18	0.14	0.08	n/a	n/a	n/a
	3	(76)	0.64	0.61	0.57	0.38	0.28	0.16	0.55	0.54	0.53	0.17	0.13	0.08	0.34	0.25	0.15	n/a	n/a	n/a
(h)	4	(102)	0.69	0.65	0.59	0.45	0.33	0.19	0.57	0.56	0.54	0.26	0.19	0.12	0.45	0.33	0.19	n/a	n/a	n/a
SSS	4-5/8	(117)	0.72	0.67	0.60	0.50	0.37	0.22	0.58	0.56	0.55	0.32	0.24	0.14	0.50	0.37	0.22	0.56	n/a	n/a
kne	5	(127)	0.74	0.69	0.61	0.54	0.39	0.23	0.58	0.57	0.55	0.36	0.27	0.16	0.54	0.39	0.23	0.58	n/a	n/a
hic	5-3/4	(146)	0.77	0.71	0.63	0.61	0.45	0.26	0.60	0.58	0.56	0.45	0.33	0.20	0.61	0.45	0.26	0.62	0.57	n/a
te t	6	(152)	0.78	0.72	0.63	0.64	0.47	0.27	0.60	0.58	0.56	0.47	0.36	0.21	0.64	0.47	0.27	0.64	0.58	n/a
cret	7	(178)	0.83	0.76	0.66	0.75	0.54	0.32	0.62	0.60	0.57	0.60	0.45	0.27	0.75	0.54	0.32	0.69	0.63	n/a
ono	8	(203)	0.88	0.80	0.68	0.85	0.62	0.36	0.64	0.61	0.58	0.73	0.55	0.33	0.85	0.62	0.36	0.74	0.67	n/a
/ c	8-3/4	(222)	0.91	0.82	0.69	0.93	0.68	0.39	0.65	0.62	0.59	0.84	0.63	0.38	0.93	0.68	0.39	0.77	0.70	0.59
$(c_a)$	9	(229)	0.92	0.83	0.70	0.96	0.70	0.41	0.65	0.63	0.59	0.87	0.65	0.39	0.96	0.70	0.41	0.78	0.71	0.60
) ec	10	(254)	0.97	0.87	0.72	1.00	0.78	0.45	0.67	0.64	0.60	1.00	0.77	0.46	1.00	0.78	0.45	0.82	0.75	0.63
and	11	(279)	1.00	0.91	0.74		0.85	0.50	0.69	0.65	0.61		0.88	0.53		0.85	0.50	0.86	0.78	0.66
eist	12	(305)		0.94	0.77		0.93	0.54	0.70	0.67	0.62		1.00	0.60		0.93	0.54	0.90	0.82	0.69
je (	14	(356)		1.00	0.81		1.00	0.63	0.74	0.70	0.64			0.76		1.00	0.63	0.97	0.88	0.75
òpà	16	(406)			0.86			0.72	0.77	0.72	0.66			0.93			0.72	1.00	0.95	0.80
/ (	18	(457)			0.90			0.81	0.80	0.75	0.68			1.00			0.81		1.00	0.85
g (s	24	(610)			1.00			1.00	0.91	0.83	0.74						1.00			0.98
cinç	30	(762)							1.00	0.92	0.80									1.00
рас	36	(914)								1.00	0.86									
S	> 48	(1219)									0.98									

#### Table 8 - Load adjustment factors for #3 rebar in uncracked concrete^{1,2,3}

#### Table 9 - Load adjustment factors for #3 rebar in cracked concrete^{1,2,3}

												Edg	je distar	nce in sh	near					
			Spa	acing fac	ctor	Edge o	distance	factor	Spa	acing fac	ctor				T(	o and av	vay	Conci	rete thic	kness
	#3		i	n tensio	n	i	n tensioi	n	i	in shear	1	To	ward ed	ge	fı	om edg	e	fact	or in sh	ear⁵
crac	ked con	ncrete		$f_{AN}$			$f_{\rm BN}$			$f_{AV}$			$f_{\rm RV}$			$f_{\rm RV}$			$f_{\rm HV}$	
Fmbe	dment	in.	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2
r	l _{ef}	(mm)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)
Ē	1-3/4	(44)	n/a	n/a	n/a	0.53	0.49	0.43	n/a	n/a	n/a	0.07	0.05	0.03	0.14	0.11	0.06	n/a	n/a	n/a
лш	1-7/8	(48)	0.59	0.57	0.54	0.55	0.50	0.44	0.53	0.53	0.52	0.08	0.06	0.03	0.16	0.12	0.07	n/a	n/a	n/a
р. Г	2	(51)	0.59	0.57	0.54	0.56	0.51	0.44	0.53	0.53	0.52	0.09	0.06	0.04	0.17	0.13	0.08	n/a	n/a	n/a
-	3	(76)	0.64	0.61	0.57	0.68	0.60	0.49	0.55	0.54	0.53	0.16	0.12	0.07	0.32	0.24	0.14	n/a	n/a	n/a
(h),	4	(102)	0.69	0.65	0.59	0.81	0.70	0.55	0.57	0.55	0.54	0.25	0.18	0.11	0.49	0.36	0.22	n/a	n/a	n/a
SSS	4-5/8	(117)	0.72	0.67	0.60	0.90	0.76	0.58	0.58	0.56	0.54	0.31	0.23	0.14	0.61	0.45	0.27	0.55	n/a	n/a
kne	5	(127)	0.74	0.69	0.61	0.95	0.80	0.60	0.58	0.57	0.55	0.34	0.25	0.15	0.69	0.51	0.30	0.57	n/a	n/a
hic	5-3/4	(146)	0.77	0.71	0.63	1.00	0.88	0.64	0.59	0.58	0.55	0.42	0.31	0.19	0.85	0.63	0.38	0.61	0.55	n/a
e tl	6	(152)	0.78	0.72	0.63		0.91	0.66	0.60	0.58	0.56	0.45	0.33	0.20	0.91	0.67	0.40	0.63	0.57	n/a
cret	7	(178)	0.83	0.76	0.66		1.00	0.72	0.61	0.59	0.57	0.57	0.42	0.25	1.00	0.84	0.50	0.68	0.61	n/a
onc	8	(203)	0.88	0.80	0.68			0.78	0.63	0.61	0.58	0.70	0.51	0.31		1.00	0.62	0.72	0.65	n/a
/c	8-3/4	(222)	0.91	0.82	0.69			0.83	0.64	0.62	0.58	0.80	0.59	0.35			0.70	0.76	0.68	0.58
(ca)	9	(229)	0.92	0.83	0.70			0.85	0.65	0.62	0.59	0.83	0.61	0.37			0.74	0.77	0.69	0.58
e	10	(254)	0.97	0.87	0.72			0.91	0.66	0.63	0.60	0.97	0.72	0.43			0.86	0.81	0.73	0.62
an	11	(279)	1.00	0.91	0.74			0.98	0.68	0.65	0.60	1.00	0.83	0.50			0.98	0.85	0.77	0.65
eist	12	(305)		0.94	0.77			1.00	0.70	0.66	0.61		0.94	0.57			1.00	0.89	0.80	0.68
ge	14	(356)		1.00	0.81				0.73	0.69	0.63		1.00	0.71				0.96	0.86	0.73
ede	16	(406)			0.86				0.76	0.71	0.65			0.87				1.00	0.92	0.78
/ (\$	18	(457)			0.90				0.79	0.74	0.67			1.00					0.98	0.83
g (s	24	(610)			1.00				0.89	0.82	0.73			1.00					1.00	0.96
cin	30	(762)							0.99	0.90	0.79			1.00						1.00
spa	36	(914)							1.00	0.98	0.84			1.00						L
0	> 48	(1219)								1.00	0.96			1.00						

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{ef'} f_{AV}$  is applicable when edge distance,  $c < 3^*h_{ef'}$ . If  $c \ge 3^*h_{ef'}$  then  $f_{AV} = f_{AN}$ . 5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{ef'}$ . If  $c \ge 3^*h_{ef'}$  then  $f_{HV} = 1.0$ .

													Edg	ge distar	nce in sh	near				
			Spa	acing fac	ctor	Edge o	distance	factor	Spa	acing fac	ctor				∥ Te	o and av	way	Conci	rete thic	kness
	#4		iı	n tensio	n	i	n tensio	n		in shear	1	To	ward ed	ge	fi	rom edg	e	fact	or in sh	ear⁵
uncra	cked co	ncrete		$f_{AN}$			$f_{\rm PN}$			$f_{AV}$			$f_{\rm PV}$	•		f _{PV}			$f_{HV}$	
Embe	dment	in.	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10
ł	ا _{ef}	(mm)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)
	1-3/4	(44)	n/a	n/a	n/a	0.26	0.20	0.11	n/a	n/a	n/a	0.05	0.04	0.02	0.11	0.07	0.04	n/a	n/a	n/a
Ē	2-1/2	(64)	0.59	0.57	0.54	0.29	0.22	0.13	0.53	0.53	0.52	0.09	0.06	0.02	0.18	0.13	0.08	n/a	n/a	n/a
L) L	3	(76)	0.61	0.58	0.55	0.32	0.24	0.14	0.54	0.53	0.52	0.12	0.08	0.05	0.24	0.17	0.10	n/a	n/a	n/a
.⊑.	4	(102)	0.64	0.61	0.57	0.37	0.28	0.16	0.55	0.54	0.53	0.18	0.13	0.08	0.37	0.26	0.15	n/a	n/a	n/a
Ê,	5	(127)	0.68	0.64	0.58	0.42	0.32	0.18	0.57	0.55	0.54	0.26	0.18	0.11	0.42	0.32	0.18	n/a	n/a	n/a
SS	5-3/4	(146)	0.70	0.66	0.60	0.47	0.35	0.20	0.58	0.56	0.54	0.32	0.22	0.13	0.47	0.35	0.20	0.56	n/a	n/a
kne	6	(152)	0.71	0.67	0.60	0.48	0.36	0.21	0.58	0.56	0.55	0.34	0.24	0.14	0.48	0.36	0.21	0.57	n/a	n/a
jc	7	(178)	0.75	0.69	0.62	0.55	0.40	0.24	0.59	0.57	0.55	0.42	0.30	0.18	0.55	0.40	0.24	0.61	n/a	n/a
ett	7-1/4	(184)	0.76	0.70	0.62	0.57	0.42	0.24	0.60	0.58	0.55	0.45	0.31	0.19	0.57	0.42	0.24	0.62	0.55	n/a
ret	8	(203)	0.79	0.72	0.63	0.63	0.46	0.27	0.61	0.58	0.56	0.52	0.36	0.22	0.63	0.46	0.27	0.66	0.58	n/a
ouo	9	(229)	0.82	0.75	0.65	0.70	0.52	0.30	0.62	0.60	0.57	0.62	0.43	0.26	0.70	0.52	0.30	0.70	0.62	n/a
õ	10	(254)	0.86	0.78	0.67	0.78	0.57	0.34	0.63	0.61	0.58	0.72	0.51	0.30	0.78	0.57	0.34	0.73	0.65	n/a
c a)	11-1/4	(286)	0.90	0.81	0.69	0.88	0.65	0.38	0.65	0.62	0.58	0.86	0.60	0.36	0.88	0.65	0.38	0.78	0.69	0.58
)e	12	(305)	0.93	0.83	0.70	0.94	0.69	0.40	0.66	0.63	0.59	0.95	0.67	0.40	0.94	0.69	0.40	0.80	0.71	0.60
anc	14	(356)	1.00	0.89	0.73	1.00	0.80	0.47	0.69	0.65	0.61	1.00	0.84	0.50	1.00	0.80	0.47	0.87	0.77	0.65
aist	16	(406)		0.94	0.77		0.92	0.54	0.72	0.67	0.62		1.00	0.61		0.92	0.54	0.93	0.82	0.69
ge e	18	(457)		1.00	0.80		1.00	0.60	0.74	0.69	0.64			0.73		1.00	0.60	0.98	0.87	0.74
éd	20	(508)			0.83			0.67	0.77	0.71	0.65			0.86			0.67	1.00	0.92	0.78
(	22	(559)			0.87			0.74	0.80	0.73	0.67			0.99			0.74		0.97	0.81
g (s	24	(610)			0.90			0.81	0.82	0.75	0.68			1.00			0.81		1.00	0.85
ci.	30	(762)			1.00			1.00	0.90	0.82	0.73						1.00			0.95
pad	36	(914)							0.98	0.88	0.77									1.00
S	> 48	(1219)							1.00	1.00	0.86									

Table 10 - Load adjustment factors for #4 rebar in uncracked concrete^{1,2,3}

Table 11 - Load adjustment factors for #4 rebar in cracked concrete^{1,2,3}

													Edg	ge distar	nce in sh	iear				
			Spa	acing fac	ctor	Edge o	distance	factor	Spa	acing fac	ctor				∥ To	o and av	vay	Conci	rete thic	kness
	#4		ir	n tensio	n	i	n tensio	n		in shear	ŧ.	To	ward ed	ge	 fr	om edg	e	fact	or in sh	ear⁵
crac	ked con	crete		$f_{AN}$			$f_{\rm RN}$			$f_{AV}$			$f_{\rm BV}$			f _{RV}			$f_{\rm HV}$	
Embe	dment	in.	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10
ł	n _{ef}	(mm)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)
	1-3/4	(44)	n/a	n/a	n/a	0.48	0.45	0.41	n/a	n/a	n/a	0.05	0.03	0.02	0.11	0.07	0.04	n/a	n/a	n/a
Ē	2-1/2	(64)	0.59	0.57	0.54	0.55	0.50	0.44	0.53	0.53	0.52	0.09	0.06	0.03	0.18	0.12	0.07	n/a	n/a	n/a
Ľ	3	(76)	0.61	0.58	0.55	0.59	0.53	0.46	0.54	0.53	0.52	0.12	0.08	0.05	0.24	0.16	0.09	n/a	n/a	n/a
	4	(102)	0.64	0.61	0.57	0.68	0.60	0.49	0.55	0.54	0.53	0.18	0.12	0.07	0.37	0.24	0.14	n/a	n/a	n/a
ίμ.	5	(127)	0.68	0.64	0.58	0.78	0.67	0.53	0.57	0.55	0.54	0.26	0.17	0.10	0.52	0.34	0.20	n/a	n/a	n/a
SSS	5-3/4	(146)	0.70	0.66	0.60	0.86	0.73	0.56	0.58	0.56	0.54	0.32	0.21	0.12	0.64	0.41	0.24	0.56	n/a	n/a
¥ne	6	(152)	0.71	0.67	0.60	0.89	0.75	0.57	0.58	0.56	0.54	0.34	0.22	0.13	0.68	0.44	0.26	0.57	n/a	n/a
hic	7	(178)	0.75	0.69	0.62	1.00	0.83	0.62	0.59	0.57	0.55	0.43	0.28	0.16	0.86	0.56	0.33	0.62	n/a	n/a
e tl	7-1/4	(184)	0.76	0.70	0.62		0.85	0.63	0.60	0.57	0.55	0.45	0.29	0.17	0.90	0.59	0.34	0.63	0.54	n/a
cret	8	(203)	0.79	0.72	0.63		0.91	0.66	0.61	0.58	0.56	0.52	0.34	0.20	1.00	0.68	0.40	0.66	0.57	n/a
ы	9	(229)	0.82	0.75	0.65		1.00	0.70	0.62	0.59	0.56	0.62	0.41	0.24		0.81	0.47	0.70	0.60	n/a
0/	10	(254)	0.86	0.78	0.67			0.75	0.64	0.60	0.57	0.73	0.47	0.28		0.95	0.56	0.74	0.64	n/a
c,	11-1/4	(286)	0.90	0.81	0.69			0.81	0.65	0.61	0.58	0.87	0.57	0.33		1.00	0.66	0.78	0.68	0.56
) e	12	(305)	0.93	0.83	0.70			0.85	0.66	0.62	0.59	0.96	0.62	0.36			0.73	0.81	0.70	0.58
ano	14	(356)	1.00	0.89	0.73			0.95	0.69	0.64	0.60	1.00	0.79	0.46			0.92	0.87	0.75	0.63
aist	16	(406)		0.94	0.77			1.00	0.72	0.66	0.61		0.96	0.56			1.00	0.93	0.81	0.67
je e	18	(457)		1.00	0.80				0.74	0.68	0.63		1.00	0.67				0.99	0.85	0.71
ĝ	20	(508)			0.83				0.77	0.70	0.64			0.79				1.00	0.90	0.75
~	22	(559)			0.87				0.80	0.72	0.66			0.91					0.94	0.79
) (s	24	(610)			0.90				0.82	0.74	0.67			1.00					0.99	0.83
cinç	30	(762)			1.00				0.91	0.80	0.71								1.00	0.92
20 36		(914)							0.99	0.87	0.76									1.00
S	> 48	(1219)							1.00	0.99	0.84									

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{ef}$ ,  $f_{AV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{AV} = f_{AN}$ . 5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{HV} = 1.0$ .



													Edg	je distar	nce in sh	lear				
			Spa	acing fac	ctor	Edge of	distance	factor	Spa	acing fac	ctor				To	o and av	vay	Conci	rete thic	kness
	#5		ii	n tensio	n	i	n tensio	n	i	in shear	4	To	ward ed	ge	fr	om edg	е	fact	or in sh	ear⁵
uncra	cked co	ncrete		$f_{AN}$			$f_{_{\rm RN}}$			$f_{AV}$			$f_{_{\rm RV}}$			$f_{\rm RV}$			$f_{_{\rm HV}}$	
Embe	dment	in.	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2
ł	٦ _{ef}	(mm)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)
Ê	1-3/4	(44)	n/a	n/a	n/a	0.24	0.18	0.11	n/a	n/a	n/a	0.04	0.03	0.02	0.08	0.06	0.03	n/a	n/a	n/a
Ē	3-1/8	(79)	0.59	0.57	0.54	0.29	0.22	0.13	0.54	0.53	0.52	0.10	0.07	0.04	0.20	0.13	0.08	n/a	n/a	n/a
ċ	4	(102)	0.61	0.59	0.55	0.33	0.25	0.14	0.55	0.53	0.52	0.15	0.10	0.06	0.29	0.19	0.11	n/a	n/a	n/a
	5	(127)	0.64	0.61	0.57	0.37	0.28	0.16	0.56	0.54	0.53	0.21	0.13	0.08	0.37	0.27	0.16	n/a	n/a	n/a
Ē	6	(152)	0.67	0.63	0.58	0.41	0.31	0.18	0.57	0.55	0.54	0.27	0.18	0.10	0.41	0.31	0.18	n/a	n/a	n/a
SSS	7	(178)	0.70	0.66	0.59	0.46	0.34	0.20	0.58	0.56	0.54	0.34	0.22	0.13	0.46	0.34	0.20	n/a	n/a	n/a
kne	7-1/8	(181)	0.70	0.66	0.60	0.46	0.34	0.20	0.58	0.56	0.54	0.35	0.23	0.13	0.46	0.34	0.20	0.57	n/a	n/a
hic	8	(203)	0.73	0.68	0.61	0.51	0.38	0.22	0.59	0.57	0.55	0.41	0.27	0.16	0.51	0.38	0.22	0.61	n/a	n/a
te t	9	(229)	0.76	0.70	0.62	0.56	0.41	0.24	0.60	0.58	0.55	0.50	0.32	0.19	0.56	0.41	0.24	0.65	0.56	n/a
cret	10	(254)	0.79	0.72	0.63	0.63	0.46	0.27	0.62	0.59	0.56	0.58	0.38	0.22	0.63	0.46	0.27	0.68	0.59	n/a
ŏŬ	11	(279)	0.82	0.74	0.65	0.69	0.51	0.30	0.63	0.60	0.57	0.67	0.43	0.25	0.69	0.51	0.30	0.71	0.62	n/a
0	12	(305)	0.84	0.77	0.66	0.75	0.55	0.32	0.64	0.60	0.57	0.76	0.50	0.29	0.75	0.55	0.32	0.75	0.65	n/a
Ca)	14	(356)	0.90	0.81	0.69	0.88	0.64	0.38	0.66	0.62	0.59	0.96	0.62	0.36	0.88	0.64	0.38	0.81	0.70	0.58
e e	16	(406)	0.96	0.86	0.71	1.00	0.74	0.43	0.69	0.64	0.60	1.00	0.76	0.45	1.00	0.74	0.43	0.86	0.75	0.62
ano	18	(457)	1.00	0.90	0.74		0.83	0.49	0.71	0.66	0.61		0.91	0.53		0.83	0.49	0.91	0.79	0.66
aist	20	(508)		0.94	0.77		0.92	0.54	0.73	0.67	0.62		1.00	0.62		0.92	0.54	0.96	0.83	0.70
je e	22	(559)		0.99	0.79		1.00	0.59	0.75	0.69	0.63			0.72		1.00	0.59	1.00	0.87	0.73
bê	24	(610)		1.00	0.82			0.65	0.78	0.71	0.65			0.82			0.65		0.91	0.76
/	26	(660)			0.85			0.70	0.80	0.73	0.66			0.92			0.70		0.95	0.79
s) [	28	(711)			0.87			0.75	0.82	0.74	0.67			1.00			0.75		0.99	0.82
cinč	30	(762)			0.90			0.81	0.85	0.76	0.68						0.81		1.00	0.85
рас	36	(914)			0.98			0.97	0.92	0.81	0.72						0.97			0.94
S	> 48	(1219)			1.00			1.00	1.00	0.92	0.79						1.00			1.00

#### Table 12 - Load adjustment factors for #5 rebar in uncracked concrete^{1,2,3}

#### Table 13 - Load adjustment factors for #5 rebar in cracked concrete^{1,2,3}

											Edg	ge distar	ice in sh	iear						
			Spa	acing fa	ctor	Edge of	distance	factor	Spa	acing fac	ctor		1		T(	o and av	vay	Conci	rete thic	kness
	#5		ir	n tensio	n	i	n tensio	n	i	in shear	4	To	ward ed	ge	fı	om edg	e	fact	or in sh	ear⁵
crac	ked con	orete		$f_{AN}$			$f_{\rm BN}$			$f_{AV}$			$f_{\rm BV}$	-		f _{RV}			$f_{HV}$	
Embe	dment	in.	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2
r	۱ _{ef}	(mm)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)
( <i>د</i>	1-3/4	(44)	n/a	n/a	n/a	0.46	0.43	0.40	n/a	n/a	n/a	0.04	0.03	0.01	0.09	0.06	0.03	n/a	n/a	n/a
ш	3-1/8	(79)	0.59	0.57	0.54	0.55	0.50	0.44	0.54	0.53	0.52	0.10	0.07	0.03	0.20	0.13	0.07	n/a	n/a	n/a
л. (	4	(102)	0.61	0.59	0.55	0.61	0.55	0.46	0.55	0.53	0.52	0.15	0.10	0.05	0.30	0.19	0.10	n/a	n/a	n/a
-	5	(127)	0.64	0.61	0.57	0.69	0.60	0.49	0.56	0.54	0.53	0.21	0.13	0.07	0.41	0.27	0.14	n/a	n/a	n/a
(L)	6	(152)	0.67	0.63	0.58	0.77	0.66	0.53	0.57	0.55	0.53	0.27	0.18	0.09	0.54	0.35	0.18	n/a	n/a	n/a
SS	7	(178)	0.70	0.66	0.59	0.85	0.72	0.56	0.58	0.56	0.54	0.34	0.22	0.11	0.68	0.44	0.23	n/a	n/a	n/a
чnе	7-1/8	(181)	0.70	0.66	0.60	0.86	0.73	0.56	0.58	0.56	0.54	0.35	0.23	0.12	0.70	0.46	0.23	0.58	n/a	n/a
loir	8	(203)	0.73	0.68	0.61	0.93	0.78	0.59	0.59	0.57	0.54	0.42	0.27	0.14	0.84	0.54	0.28	0.61	n/a	n/a
e tl	9	(229)	0.76	0.70	0.62	1.00	0.85	0.62	0.60	0.58	0.55	0.50	0.32	0.17	1.00	0.65	0.33	0.65	0.56	n/a
ret	10	(254)	0.79	0.72	0.63		0.91	0.66	0.62	0.59	0.56	0.58	0.38	0.19		0.76	0.39	0.68	0.59	n/a
onc	11	(279)	0.82	0.74	0.65		0.98	0.69	0.63	0.60	0.56	0.67	0.44	0.22		0.88	0.45	0.72	0.62	n/a
°,	12	(305)	0.84	0.77	0.66		1.00	0.73	0.64	0.60	0.57	0.77	0.50	0.26		1.00	0.51	0.75	0.65	n/a
$c_a)$	14	(356)	0.90	0.81	0.69			0.81	0.66	0.62	0.58	0.97	0.63	0.32			0.64	0.81	0.70	0.56
) ec	16	(406)	0.96	0.86	0.71			0.89	0.69	0.64	0.59	1.00	0.77	0.39			0.79	0.86	0.75	0.60
anc	18	(457)	1.00	0.90	0.74			0.97	0.71	0.66	0.60		0.92	0.47			0.94	0.92	0.79	0.63
eist	20	(508)		0.94	0.77			1.00	0.73	0.67	0.61		1.00	0.55			1.00	0.97	0.84	0.67
je (	22	(559)		0.99	0.79				0.76	0.69	0.62			0.63				1.00	0.88	0.70
eg 22 24		(610)		1.00	0.82				0.78	0.71	0.63			0.72					0.92	0.73
₩ <u>24</u> 26		(660)			0.85				0.80	0.73	0.65			0.81					0.95	0.76
<u>ග</u> 20 ව 28		(711)			0.87				0.83	0.74	0.66			0.91					0.99	0.79
Sing	30	(762)			0.90				0.85	0.76	0.67			1.00					1.00	0.82
рас	36	(914)			0.98				0.92	0.81	0.70									0.90
S	> 48	(1219)			1.00				1.00	0.92	0.77									1.00

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{ef}$ ,  $f_{AV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{AV} = f_{AN}$ . 5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{HV} = 1.0$ .

													Edg	ge distar	nce in sh	iear				
			Spa	acing fac	ctor	Edge o	distance	factor	Spa	acing fac	ctor				To	o and av	way	Conc	rete thic	kness
	#6		iı	n tensio	n	iı	n tensio	n	i	in shear	4	To	ward ed	ge	fr	om edg	е	fact	or in sh	ear⁵
uncra	cked co	ncrete		$f_{AN}$			$f_{_{\rm RN}}$			$f_{AV}$			$f_{_{\rm BV}}$			$f_{_{\rm RV}}$			$f_{_{\rm HV}}$	
Embe	dment	in.	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15
ł	ו _{ef}	(mm)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)
	1-3/4	(44)	n/a	n/a	n/a	0.24	0.18	0.10	n/a	n/a	n/a	0.03	0.02	0.01	0.07	0.05	0.02	n/a	n/a	n/a
Ê	3-3/4	(95)	0.59	0.57	0.54	0.30	0.22	0.13	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.08	n/a	n/a	n/a
E.	4 (102) 0.60 0.57 5 (127) 0.62 0.59		0.54	0.31	0.23	0.13	0.54	0.53	0.52	0.12	0.08	0.04	0.24	0.16	0.08	n/a	n/a	n/a		
.⊆	5	(127)	0.62	0.59	0.56	0.34	0.25	0.15	0.55	0.54	0.53	0.17	0.11	0.06	0.33	0.22	0.12	n/a	n/a	n/a
÷.	6	(152)	0.64	0.61	0.57	0.38	0.28	0.16	0.56	0.55	0.53	0.22	0.14	0.08	0.38	0.28	0.16	n/a	n/a	n/a
s (L	7	(178)	0.67	0.63	0.58	0.41	0.30	0.18	0.57	0.55	0.54	0.28	0.18	0.10	0.41	0.30	0.18	n/a	n/a	n/a
Jes	8	(203)	0.69	0.65	0.59	0.45	0.33	0.19	0.58	0.56	0.54	0.34	0.22	0.12	0.45	0.33	0.19	n/a	n/a	n/a
Š	8-1/2	(216)	0.70	0.66	0.59	0.47	0.34	0.20	0.59	0.56	0.54	0.37	0.24	0.13	0.47	0.34	0.20	0.59	n/a	n/a
Ę	9	(229)	0.72	0.67	0.60	0.49	0.36	0.21	0.59	0.57	0.55	0.40	0.26	0.14	0.49	0.36	0.21	0.60	n/a	n/a
ete	10	(254)	0.74	0.69	0.61	0.53	0.39	0.23	0.60	0.58	0.55	0.47	0.31	0.17	0.53	0.39	0.23	0.64	n/a	n/a
LC LC	10-3/4	(273)	0.76	0.70	0.62	0.57	0.41	0.24	0.61	0.58	0.55	0.53	0.34	0.19	0.57	0.41	0.24	0.66	0.57	n/a
8	12	(305)	0.79	0.72	0.63	0.64	0.46	0.27	0.62	0.59	0.56	0.62	0.40	0.22	0.64	0.46	0.27	0.70	0.60	n/a
( ^a )/	14	(356)	0.84	0.76	0.66	0.74	0.54	0.32	0.64	0.61	0.57	0.78	0.51	0.28	0.74	0.54	0.32	0.75	0.65	n/a
0	16	(406)	0.89	0.80	0.68	0.85	0.62	0.36	0.66	0.62	0.58	0.96	0.62	0.34	0.85	0.62	0.36	0.80	0.70	n/a
л <u>с</u>	16-3/4	(425)	0.90	0.81	0.69	0.89	0.65	0.38	0.67	0.63	0.58	1.00	0.67	0.36	0.89	0.65	0.38	0.82	0.71	0.58
sta	18	(457)	0.93	0.83	0.70	0.96	0.69	0.41	0.68	0.64	0.59		0.74	0.40	0.96	0.69	0.41	0.85	0.74	0.60
<u>e</u>	20	(508)	0.98	0.87	0.72	1.00	0.77	0.45	0.70	0.65	0.60		0.87	0.47	1.00	0.77	0.45	0.90	0.78	0.64
đđ	22	(559)	1.00	0.91	0.74		0.85	0.50	0.72	0.67	0.61		1.00	0.54		0.85	0.50	0.94	0.82	0.67
ē	24	(610)		0.94	0.77		0.93	0.54	0.74	0.68	0.62			0.62		0.93	0.54	0.99	0.85	0.70
(s)	26	(660)		0.98	0.79		1.00	0.59	0.76	0.70	0.63			0.70		1.00	0.59	1.00	0.89	0.72
bu	28	(711)		1.00	0.81			0.63	0.78	0.71	0.64			0.78			0.63		0.92	0.75
aci	30	(762)			0.83			0.68	0.80	0.73	0.65			0.87			0.68		0.95	0.78
Sp	36	(914)			0.90			0.81	0.86	0.77	0.68			1.00			0.81		1.00	0.85
	> 48	(1219)			1.00			1.00	0.99	0.86	0.74						1.00			0.98

Table 14 - Load adjustment factors for #6 rebar in uncracked concrete^{1,2,3}

Table 15 - Load adjustment factors for #6 rebar in cracked concrete^{1,2,3}

													Edg	ge distar	nce in sh	iear				
			Spa	acing fac	ctor	Edge of	distance	factor	Spa	acing fac	ctor				T(	o and av	vay	Conci	rete thic	kness
	#6		ii	n tensio	n	i	n tensio	n		n shear	1	To	ward ed	ge	fr	om edg	e	fact	tor in sh	ear⁵
crac	ked con	crete		$f_{AN}$			$f_{_{\rm RN}}$			$f_{AV}$			$f_{_{\rm BV}}$			$f_{\rm RV}$			$f_{_{\rm HV}}$	
Embe	dment	in.	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15
ł	۱ _{ef}	(mm)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)
_	1-3/4	(44)	n/a	n/a	n/a	0.44	0.42	0.39	n/a	n/a	n/a	0.03	0.02	0.01	0.07	0.05	0.02	n/a	n/a	n/a
Ē	3-3/4	(95)	0.59	0.57	0.54	0.55	0.50	0.44	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a
Ē	4	(102)	0.60	0.57	0.54	0.57	0.51	0.44	0.54	0.53	0.52	0.12	0.08	0.04	0.24	0.16	0.07	n/a	n/a	n/a
.⊑	5	(127)	0.62	0.59	0.56	0.63	0.56	0.47	0.55	0.54	0.52	0.17	0.11	0.05	0.34	0.22	0.10	n/a	n/a	n/a
, Ĉ	6	(152)	0.64	0.61	0.57	0.69	0.60	0.49	0.56	0.55	0.53	0.22	0.14	0.07	0.44	0.29	0.13	n/a	n/a	n/a
l) si	7	(178)	0.67	0.63	0.58	0.76	0.65	0.52	0.57	0.55	0.53	0.28	0.18	0.08	0.56	0.36	0.17	n/a	n/a	n/a
ues	8	(203)	0.69	0.65	0.59	0.82	0.70	0.55	0.58	0.56	0.54	0.34	0.22	0.10	0.68	0.44	0.21	n/a	n/a	n/a
<u>ck</u>	8-1/2	(216)	0.70	0.66	0.59	0.86	0.72	0.56	0.59	0.56	0.54	0.37	0.24	0.11	0.75	0.49	0.23	0.59	n/a	n/a
ţ	9	(229)	0.72	0.67	0.60	0.90	0.75	0.57	0.59	0.57	0.54	0.41	0.26	0.12	0.82	0.53	0.25	0.61	n/a	n/a
ete	10	(254)	0.74	0.69	0.61	0.97	0.80	0.60	0.60	0.58	0.55	0.48	0.31	0.14	0.95	0.62	0.29	0.64	n/a	n/a
JC L	10-3/4	(273)	0.76	0.70	0.62	1.00	0.84	0.62	0.61	0.58	0.55	0.53	0.35	0.16	1.00	0.69	0.32	0.66	0.57	n/a
ō	12	(305)	0.79	0.72	0.63		0.91	0.66	0.62	0.59	0.55	0.63	0.41	0.19		0.82	0.38	0.70	0.61	n/a
a) /	14	(356)	0.84	0.76	0.66		1.00	0.72	0.64	0.61	0.56	0.79	0.51	0.24		1.00	0.48	0.76	0.65	n/a
<u>o</u>	16	(406)	0.89	0.80	0.68			0.78	0.66	0.62	0.57	0.97	0.63	0.29			0.58	0.81	0.70	n/a
ЪС	16-3/4	(425)	0.90	0.81	0.69			0.81	0.67	0.63	0.58	1.00	0.67	0.31			0.62	0.83	0.72	0.55
sta	18	(457)	0.93	0.83	0.70			0.85	0.68	0.64	0.58		0.75	0.35			0.70	0.86	0.74	0.57
ē	20	(508)	0.98	0.87	0.72			0.91	0.70	0.65	0.59		0.88	0.41			0.82	0.90	0.78	0.61
dge	22	(559)	1.00	0.91	0.74			0.98	0.72	0.67	0.60		1.00	0.47			0.94	0.95	0.82	0.63
ē	24	(610)		0.94	0.77			1.00	0.74	0.68	0.61			0.54			1.00	0.99	0.86	0.66
(s)	26	(660)		0.98	0.79				0.76	0.70	0.62			0.60				1.00	0.89	0.69
bu	28	(711)		1.00	0.81				0.79	0.71	0.63			0.68					0.92	0.72
aci	30	(762)			0.83				0.81	0.73	0.64			0.75					0.96	0.74
Sp	36	(914)			0.90				0.87	0.77	0.66			0.98					1.00	0.81
	> 48	(1219)			1.00				0.99	0.87	0.72			1.00						0.94

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{ef}$ ,  $f_{AV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{AV} = f_{AN}$ . 5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{HV} = 1.0$ .

3.2.3



													Edg	je distar	nce in sh	near				
	#7		Spa ii	acing fac n tensior	ctor n	Edge o	distance n tensio	factor n	Spa	acing fao in shear	ctor ₄	То	⊥ ward ed	ge	∥ To fr	o and av rom edg	vay e	Conc fac	rete thic tor in sh	kness ear⁵
uncra	cked co	ncrete		f _{AN}			$f_{\sf RN}$			$f_{AV}$			f _{RV}			$f_{_{\rm RV}}$			$f_{_{\rm HV}}$	
Embe	dment	in.	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2
ł	ו _{ef}	(mm)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)
	1-3/4	(44)	n/a	n/a	n/a	0.24	0.17	0.10	n/a	n/a	n/a	0.03	0.02	0.01	0.05	0.04	0.02	n/a	n/a	n/a
Ē	4-3/8	(111)	0.59	0.57	0.54	0.31	0.22	0.13	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.07	n/a	n/a	n/a
Ē.	5	(127)	0.60	0.58	0.55	0.33	0.23	0.14	0.54	0.53	0.52	0.13	0.09	0.04	0.27	0.17	0.09	n/a	n/a	n/a
.⊑	6	(152)	0.62	0.60	0.56	0.36	0.25	0.15	0.55	0.54	0.52	0.17	0.11	0.06	0.35	0.23	0.12	n/a	n/a	n/a
, Ĉ	7	(178)	0.65	0.61	0.57	0.39	0.28	0.16	0.56	0.55	0.53	0.22	0.14	0.07	0.39	0.28	0.15	n/a	n/a	n/a
ŝ	8	(203)	0.67	0.63	0.58	0.42	0.30	0.18	0.57	0.55	0.53	0.27	0.17	0.09	0.42	0.30	0.18	n/a	n/a	n/a
Jes	9	(229)	0.69	0.64	0.59	0.45	0.32	0.19	0.58	0.56	0.54	0.32	0.21	0.11	0.45	0.32	0.19	n/a	n/a	n/a
ički	9-7/8	(251)	0.71	0.66	0.59	0.48	0.34	0.20	0.59	0.56	0.54	0.37	0.24	0.12	0.48	0.34	0.20	0.59	n/a	n/a
ţ	10	(254)	0.71	0.66	0.60	0.49	0.35	0.20	0.59	0.57	0.54	0.38	0.24	0.12	0.49	0.35	0.20	0.59	n/a	n/a
ete	11	(279)	0.73	0.67	0.60	0.52	0.37	0.22	0.60	0.57	0.55	0.43	0.28	0.14	0.52	0.37	0.22	0.62	n/a	n/a
ъ Г	12	(305)	0.75	0.69	0.61	0.56	0.40	0.23	0.60	0.58	0.55	0.49	0.32	0.16	0.56	0.40	0.23	0.65	n/a	n/a
8	12-1/2	(318)	0.76	0.70	0.62	0.59	0.41	0.24	0.61	0.58	0.55	0.52	0.34	0.17	0.59	0.41	0.24	0.66	0.57	n/a
a) /	14	(356)	0.79	0.72	0.63	0.66	0.46	0.27	0.62	0.59	0.56	0.62	0.40	0.21	0.66	0.46	0.27	0.70	0.60	n/a
0	16	(406)	0.83	0.75	0.65	0.75	0.53	0.31	0.64	0.60	0.57	0.76	0.49	0.25	0.75	0.53	0.31	0.75	0.65	n/a
цõ	18	(457)	0.87	0.79	0.67	0.84	0.60	0.35	0.66	0.62	0.57	0.91	0.59	0.30	0.84	0.60	0.35	0.79	0.68	n/a
sta	19-1/2	(495)	0.91	0.81	0.69	0.92	0.65	0.38	0.67	0.63	0.58	1.00	0.66	0.34	0.92	0.65	0.38	0.82	0.71	0.57
e.	20	(508)	0.92	0.82	0.69	0.94	0.66	0.39	0.67	0.63	0.58		0.69	0.35	0.94	0.66	0.39	0.83	0.72	0.58
őp	22	(559)	0.96	0.85	0.71	1.00	0.73	0.43	0.69	0.64	0.59		0.80	0.40	1.00	0.73	0.43	0.87	0.76	0.60
ĕ	24	(610)	1.00	0.88	0.73		0.80	0.47	0.71	0.66	0.60		0.91	0.46		0.80	0.47	0.91	0.79	0.63
(s)	26	(660)		0.91	0.75		0.86	0.51	0.73	0.67	0.61		1.00	0.52		0.86	0.51	0.95	0.82	0.66
bu	28	(711)		0.94	0.77		0.93	0.54	0.74	0.68	0.62			0.58		0.93	0.54	0.99	0.85	0.68
aci	30	(762)		0.98	0.79		1.00	0.58	0.76	0.70	0.62			0.64		1.00	0.58	1.00	0.88	0.71
Sp	36	(914)		1.00	0.84			0.70	0.81	0.73	0.65			0.85			0.70		0.97	0.77
	> 48	(1219)			0.96			0.93	0.92	0.81	0.70			1.00			0.93		1.00	0.89

#### Table 16 - Load adjustment factors for #7 rebar in uncracked concrete^{1,2,3}

#### Table 17 - Load adjustment factors for #7 rebar in cracked concrete^{1,2,3}

													Edg	je distar	ice in sh	near				
	#7		Spa	acing fac	otor	Edge o	distance	factor	Spa	acing fac	ctor	То		00	∥ To	o and av	vay	Conc	rete thic	kness
crac	πι ked con	crete		f	1		f			f		10	f	ge		f	e	Taci	f	cai
		in	7 7 /0		17 1/0	7 7 /0	J _{RN}	17 1/0	7 7 /0		17 1/0	7 7 /0	J _{RV}	17 1/0	7 7 /0	J _{RV}	17 1/0	7 7 /0	J _{HV}	17 1/0
Embe	dment	in.	1-1/0	10-1/2	17-1/2	1-1/0	10-1/2	17-1/2	/-//0	10-1/2	17-1/2	1-1/0	10-1/2	17-1/2	1-1/0	10-1/2	17-1/2	1-1/0	10-1/2	17-1/2
r	ו _{ef}	(mm)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)
	1-3/4	(44)	n/a	n/a	n/a	0.43	0.41	0.38	n/a	n/a	n/a	0.03	0.02	0.01	0.06	0.04	0.02	n/a	n/a	n/a
E	4-3/8	(111)	0.59	0.57	0.54	0.55	0.50	0.44	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a
<u>د</u>	5	(127)	0.60	0.58	0.55	0.58	0.52	0.45	0.54	0.53	0.52	0.13	0.09	0.04	0.27	0.17	0.08	n/a	n/a	n/a
. <u>-</u>	6	(152)	0.62	0.60	0.56	0.64	0.56	0.47	0.55	0.54	0.52	0.18	0.11	0.05	0.35	0.23	0.11	n/a	n/a	n/a
Ê,	7	(178)	0.65	0.61	0.57	0.69	0.60	0.49	0.56	0.55	0.53	0.22	0.14	0.07	0.44	0.29	0.13	n/a	n/a	n/a
) ss	8	(203)	0.67	0.63	0.58	0.75	0.64	0.52	0.57	0.55	0.53	0.27	0.18	0.08	0.54	0.35	0.16	n/a	n/a	n/a
nes	9	(229)	0.69	0.64	0.59	0.81	0.68	0.54	0.58	0.56	0.54	0.32	0.21	0.10	0.65	0.42	0.20	n/a	n/a	n/a
ş	9-7/8	(251)	0.71	0.66	0.59	0.86	0.72	0.56	0.59	0.56	0.54	0.37	0.24	0.11	0.74	0.48	0.22	0.59	n/a	n/a
÷	10	(254)	0.71	0.66	0.60	0.87	0.73	0.56	0.59	0.57	0.54	0.38	0.25	0.11	0.76	0.49	0.23	0.59	n/a	n/a
rete	11	(279)	0.73	0.67	0.60	0.93	0.77	0.59	0.60	0.57	0.54	0.44	0.28	0.13	0.87	0.57	0.26	0.62	n/a	n/a
nci	12	(305)	0.75	0.69	0.61	1.00	0.82	0.61	0.60	0.58	0.55	0.50	0.32	0.15	1.00	0.65	0.30	0.65	n/a	n/a
8	12-1/2	(318)	0.76	0.70	0.62		0.84	0.62	0.61	0.58	0.55	0.53	0.34	0.16		0.69	0.32	0.66	0.57	n/a
(°a) /	14	(356)	0.79	0.72	0.63		0.91	0.66	0.62	0.59	0.55	0.63	0.41	0.19		0.82	0.38	0.70	0.61	n/a
9 0	16	(406)	0.83	0.75	0.65		1.00	0.71	0.64	0.60	0.56	0.77	0.50	0.23		1.00	0.46	0.75	0.65	n/a
õ	18	(457)	0.87	0.79	0.67			0.76	0.66	0.62	0.57	0.91	0.59	0.28			0.55	0.79	0.69	n/a
sta	19-1/2	(495)	0.91	0.81	0.69			0.80	0.67	0.63	0.58	1.00	0.67	0.31			0.62	0.82	0.71	0.55
e.	20	(508)	0.92	0.82	0.69			0.82	0.67	0.63	0.58		0.70	0.32			0.65	0.84	0.72	0.56
đđ	22	(559)	0.96	0.85	0.71			0.87	0.69	0.64	0.59		0.80	0.37			0.75	0.88	0.76	0.59
e/	24	(610)	1.00	0.88	0.73			0.93	0.71	0.66	0.59		0.91	0.43			0.85	0.92	0.79	0.61
(s)	26	(660)		0.91	0.75			0.99	0.73	0.67	0.60		1.00	0.48			0.96	0.95	0.82	0.64
ng	28	(711)		0.94	0.77			1.00	0.74	0.68	0.61			0.54			1.00	0.99	0.86	0.66
aci	30	(762)		0.98	0.79				0.76	0.70	0.62			0.59				1.00	0.89	0.69
Sp	36	(914)		1.00	0.84				0.81	0.74	0.64			0.78					0.97	0.75
	> 48	(1219)			0.96				0.92	0.81	0.69			1.00					1.00	0.87

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{ef'} f_{AV}$  is applicable when edge distance,  $c < 3^*h_{ef'}$ . If  $c \ge 3^*h_{ef'}$  then  $f_{AV} = f_{AN}$ . 5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{ef'}$ . If  $c \ge 3^*h_{ef'}$  then  $f_{HV} = 1.0$ .

													Edg	ge distar	nce in sh	ear				
			Spa	acing fac	ctor	Edge of	distance	factor	Spa	acing fac	ctor		1		To	o and av	vay	Conc	rete thic	kness
	#8		iı	n tensio	n	i	n tensio	n	i	n shear	1	To	ward ed	ge	fr	om edg	е	fact	or in sh	ear⁵
uncra	cked co	ncrete		f _{AN}			f _{RN}			f _{AV}			f _{RV}			f _{RV}			f _{HV}	
Embe	edment	in.	9	12	20	9	12	20	9	12	20	9	12	20	9	12	20	9	12	20
ł	ר _{ef}	(mm)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)
	1-3/4	(44)	n/a	n/a	n/a	0.24	0.17	0.10	n/a	n/a	n/a	0.02	0.01	0.01	0.05	0.03	0.01	n/a	n/a	n/a
Ê	5	(127)	0.59	0.57	0.54	0.32	0.22	0.13	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a
٤.	6	(152)	0.61	0.58	0.55	0.34	0.24	0.14	0.55	0.53	0.52	0.14	0.09	0.04	0.29	0.19	0.09	n/a	n/a	n/a
.⊆	7         (178)         0.63         0.6           8         (203)         0.65         0.6		0.60	0.56	0.37	0.26	0.15	0.55	0.54	0.52	0.18	0.12	0.06	0.36	0.23	0.11	n/a	n/a	n/a	
, (	8 (203) 0.65 ( 9 (229) 0.67 (		0.61	0.57	0.40	0.28	0.16	0.56	0.55	0.53	0.22	0.14	0.07	0.40	0.28	0.14	n/a	n/a	n/a	
ŝ	9	(229)	0.67	0.63	0.58	0.43	0.30	0.17	0.57	0.55	0.53	0.26	0.17	0.08	0.43	0.30	0.17	n/a	n/a	n/a
Jes	10	(254)	0.68	0.64	0.58	0.46	0.32	0.19	0.58	0.56	0.54	0.31	0.20	0.10	0.46	0.32	0.19	n/a	n/a	n/a
ckr	11	(279)	0.70	0.65	0.59	0.49	0.34	0.20	0.58	0.56	0.54	0.35	0.23	0.11	0.49	0.34	0.20	n/a	n/a	n/a
ţ	11-1/4	(286)	0.71	0.66	0.59	0.50	0.34	0.20	0.59	0.56	0.54	0.37	0.24	0.12	0.50	0.34	0.20	0.58	n/a	n/a
ete	12	(305)	0.72	0.67	0.60	0.52	0.36	0.21	0.59	0.57	0.54	0.40	0.26	0.13	0.52	0.36	0.21	0.60	n/a	n/a
ЪС Ц	13	(330)	0.74	0.68	0.61	0.55	0.38	0.22	0.60	0.57	0.55	0.46	0.30	0.14	0.55	0.38	0.22	0.63	n/a	n/a
8	14	(356)	0.76	0.69	0.62	0.59	0.41	0.24	0.61	0.58	0.55	0.51	0.33	0.16	0.59	0.41	0.24	0.65	n/a	n/a
a) /	14-1/4	(362)	0.76	0.70	0.62	0.60	0.42	0.24	0.61	0.58	0.55	0.52	0.34	0.16	0.60	0.42	0.24	0.66	0.57	n/a
0	16	(406)	0.79	0.72	0.63	0.67	0.47	0.27	0.62	0.59	0.56	0.62	0.40	0.20	0.67	0.47	0.27	0.70	0.60	n/a
ло	18	(457)	0.83	0.75	0.65	0.76	0.53	0.31	0.64	0.60	0.56	0.74	0.48	0.23	0.76	0.53	0.31	0.74	0.64	n/a
sta	20	(508)	0.87	0.78	0.67	0.84	0.58	0.34	0.65	0.61	0.57	0.87	0.56	0.27	0.84	0.58	0.34	0.78	0.67	n/a
ei.	22	(559)	0.90	0.81	0.68	0.93	0.64	0.38	0.67	0.63	0.58	1.00	0.65	0.32	0.93	0.64	0.38	0.82	0.71	n/a
B 22-1/4 (565)		0.91	0.81	0.69	0.94	0.65	0.38	0.67	0.63	0.58		0.66	0.32	0.94	0.65	0.38	0.82	0.71	0.56	
24 (610)		0.94	0.83	0.70	1.00	0.70	0.41	0.68	0.64	0.58		0.74	0.36	1.00	0.70	0.41	0.85	0.74	0.58	
(0.10)           (g)         26         (660)		0.98	0.86	0.72		0.76	0.45	0.70	0.65	0.59		0.84	0.41		0.76	0.45	0.89	0.77	0.60	
ng	28	(711)	1.00	0.89	0.73		0.82	0.48	0.71	0.66	0.60		0.94	0.45		0.82	0.48	0.92	0.80	0.63
aci	30	(762)		0.92	0.75		0.88	0.51	0.73	0.67	0.61		1.00	0.50		0.88	0.51	0.95	0.83	0.65
Sp	36	(914)		1.00	0.80		1.00	0.62	0.77	0.70	0.63			0.66		1.00	0.62	1.00	0.91	0.71
	> 48	(1219)			0.90			0.82	0.86	0.77	0.67			1.00			0.82		1.00	0.82

Table 18 - Load adjustment factors for #8 rebar in uncracked concrete^{1,2,3}

Table 19 - Load adjustment factors for #8 rebar in cracked concrete^{1,2,3}

											Edg	je distar	nce in sh	iear						
			Spa	acina fac	ctor	Edae	distance	factor	Spa	acina fao	ctor				II TO	o and av	vav	Conc	rete thic	kness
	#8		i	n tensio	า	i	n tensio	n		in shear	1	To	ward ed	ge	" fr	om edg	e	fact	or in sh	ear⁵
crac	ked con	crete		$f_{AN}$			$f_{\rm PN}$			$f_{\rm AV}$			$f_{PV}$	-		f _{PV}			$f_{_{\rm HV}}$	
Embe	dment	in.	9	12	20	9	12	20	9	12	20	9	12	20	9	12	20	9	12	20
	n	(mm)	(220)	(305)	(508)	(220)	(305)	(508)	(220)	(305)	(508)	(220)	(305)	(508)	(220)	(305)	(508)	(220)	(305)	(508)
	'ef	(1111)	(223)	(000)	(000)	(223)	(000)	(000)	(223)	(000)	(000)	(223)	(000)	(000)	(223)	(000)	(000)	(223)	(000)	(000)
Ê	1-3/4	(44)	n/a	n/a	n/a	0.42	0.40	0.30	n/a	n/a	n/a	0.02	0.01	0.01	0.05	0.03	0.01	n/a	n/a	n/a
E	5	(127)	0.59	0.57	0.54	0.55	0.50	0.44	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a
Ľ.	0	(152)	0.61	0.56	0.55	0.60	0.53	0.46	0.55	0.53	0.52	0.14	0.09	0.04	0.29	0.19	0.09	n/a	n/a	n/a
	- /	(170)	0.65	0.60	0.50	0.65	0.57	0.47	0.55	0.54	0.52	0.10	0.12	0.05	0.30	0.24	0.11	n/a	n/a	n/a
Ē	0	(203)	0.05	0.01	0.57	0.70	0.60	0.49	0.50	0.55	0.53	0.22	0.14	0.07	0.44	0.29	0.13	n/a	n/a	n/a
SSS	9	(229)	0.07	0.03	0.56	0.75	0.64	0.51	0.57	0.55	0.53	0.20	0.17	0.00	0.55	0.34	0.10	n/a	n/a	n/a
kne	10	(234)	0.00	0.64	0.56	0.60	0.07	0.55	0.50	0.50	0.53	0.31	0.20	0.09	0.02	0.40	0.19	n/a	n/a	n/a
hic	11 1/4	(279)	0.70	0.05	0.59	0.65	0.71	0.55	0.50	0.56	0.54	0.30	0.23	0.11	0.72	0.40	0.22	0.50	n/a	n/a
tet	10	(200)	0.71	0.00	0.59	0.07	0.72	0.50	0.59	0.50	0.54	0.37	0.24	0.11	0.74	0.40	0.22	0.59	n/a	n/a
cret	12	(330)	0.72	0.07	0.00	0.91	0.75	0.57	0.59	0.57	0.54	0.41	0.20	0.12	0.02	0.00	0.23	0.01	n/a	n/a
ouo	14	(356)	0.74	0.00	0.01	1.00	0.79	0.59	0.00	0.57	0.54	0.40	0.30	0.14	1.00	0.00	0.20	0.05	n/a	n/a
) c	14	(362)	0.70	0.09	0.02	1.00	0.03	0.02	0.01	0.58	0.55	0.51	0.33	0.10	1.00	0.67	0.31	0.05	11/a 0.57	n/a
(ca)	14-1/4	(406)	0.70	0.70	0.02		0.04	0.62	0.67	0.50	0.55	0.00	0.04	0.10		0.03	0.02	0.00	0.57	n/a
e	18	(457)	0.70	0.72	0.65		1.00	0.00	0.62	0.60	0.56	0.00	0.49	0.13		0.02	0.00	0.70	0.64	n/a
tan	20	(508)	0.00	0.78	0.00		1.00	0.75	0.65	0.60	0.50	0.70	0.40	0.20		1.00	0.40	0.74	0.68	n/a
eis	22	(559)	0.90	0.81	0.68			0.80	0.67	0.63	0.58	1.00	0.66	0.20		1.00	0.60	0.82	0.71	n/a
ge	22-1/4	(565)	0.91	0.81	0.69			0.80	0.67	0.63	0.58		0.67	0.31			0.62	0.82	0.71	0.55
eq	24	(610)	0.94	0.83	0.70			0.85	0.68	0.64	0.58		0.75	0.35			0.70	0.86	0.74	0.57
) (s	26	(660)	0.98	0.86	0.72			0.90	0.70	0.65	0.59		0.84	0.39			0.78	0.89	0.77	0.60
90	28	(711)	1.00	0.89	0.73			0.95	0.71	0.66	0.60		0.94	0.44			0.88	0.92	0.80	0.62
lcin	30	(762)		0.92	0.75			1.00	0.73	0.67	0.60		1.00	0.49			0.97	0.96	0.83	0.64
Spa	36	(914)		1.00	0.80				0.77	0.71	0.62			0.64			1.00	1.00	0.91	0.70
0,	> 48	(1219)			0.90				0.87	0.77	0.66			0.98					1.00	0.81

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{er}$ ,  $f_{AV}$  is applicable when edge distance,  $c < 3^*h_{er}$ . If  $c \ge 3^*h_{er}$ , then  $f_{AV} = f_{AN}$ . 5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{er}$ . If  $c \ge 3^*h_{er}$ , then  $f_{HV} = 1.0$ .

3.2.3



													Edg	je distar	nce in sh	iear				
uncra	#9 cked co	ncrete	Spa ii	acing fac n tension $f_{\rm AN}$	ctor n	Edge o ir	distance n tension $f_{_{\rm RN}}$	factor n	Spa i	acing fac n shear $f_{AV}$	ctor 4	То	ward ed $f_{_{\rm RV}}$	ge	∥ To fr	o and avo and avo and $f_{\rm RV}$	vay e	Conc fact	rete thic tor in sh ${f_{\scriptscriptstyle \rm HV}}$	kness ear⁵
Embe	dment	in.	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2
ł	1 _{ef}	(mm)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)
	1-3/4	(44)	n/a	n/a	n/a	0.24	0.17	0.10	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.01	n/a	n/a	n/a
(mr	5-5/8	(143)	0.59	0.57	0.54	0.33	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a
n).	6	(152)	0.60	0.57	0.54	0.33	0.23	0.13	0.54	0.53	0.52	0.12	0.08	0.04	0.24	0.16	0.07	n/a	n/a	n/a
-	7	(178)	0.61	0.59	0.55	0.36	0.25	0.14	0.55	0.54	0.52	0.15	0.10	0.05	0.30	0.20	0.09	n/a	n/a	n/a
н), .	8	(203)	0.63	0.60	0.56	0.38	0.27	0.15	0.55	0.54	0.52	0.18	0.12	0.06	0.37	0.24	0.11	n/a	n/a	n/a
) ss	9	(229)	0.65	0.61	0.57	0.41	0.28	0.16	0.56	0.55	0.53	0.22	0.14	0.07	0.41	0.28	0.13	n/a	n/a	n/a
nes	10	(254)	0.66	0.62	0.57	0.44	0.30	0.17	0.57	0.55	0.53	0.26	0.17	0.08	0.44	0.30	0.16	n/a	n/a	n/a
ick	11	(279)	0.68	0.64	0.58	0.46	0.32	0.18	0.57	0.56	0.53	0.30	0.19	0.09	0.46	0.32	0.18	n/a	n/a	n/a
e th	12	(305)	0.70	0.65	0.59	0.49	0.34	0.20	0.58	0.56	0.54	0.34	0.22	0.10	0.49	0.34	0.20	n/a	n/a	n/a
ete	12-7/8	(327)	0.71	0.66	0.60	0.52	0.36	0.21	0.59	0.57	0.54	0.38	0.24	0.11	0.52	0.36	0.21	0.59	n/a	n/a
ncı	13	(330)	0.71	0.66	0.60	0.52	0.36	0.21	0.59	0.57	0.54	0.38	0.25	0.12	0.52	0.36	0.21	0.59	n/a	n/a
S	14	(356)	0.73	0.67	0.60	0.55	0.38	0.22	0.59	0.57	0.54	0.43	0.28	0.13	0.55	0.38	0.22	0.61	n/a	n/a
a) /	16	(406)	0.76	0.70	0.62	0.62	0.43	0.25	0.61	0.58	0.55	0.52	0.34	0.16	0.62	0.43	0.25	0.66	n/a	n/a
e (c	16-1/4	(413)	0.77	0.70	0.62	0.63	0.43	0.25	0.61	0.58	0.55	0.53	0.35	0.16	0.63	0.43	0.25	0.66	0.57	n/a
nc	18	(457)	0.80	0.72	0.63	0.69	0.48	0.28	0.62	0.59	0.55	0.62	0.40	0.19	0.69	0.48	0.28	0.70	0.60	n/a
sta	20	(508)	0.83	0.75	0.65	0.77	0.54	0.31	0.63	0.60	0.56	0.73	0.47	0.22	0.77	0.54	0.31	0.73	0.64	n/a
e	22	(559)	0.86	0.77	0.66	0.85	0.59	0.34	0.65	0.61	0.57	0.84	0.55	0.25	0.85	0.59	0.34	0.77	0.67	n/a
dg	24	(610)	0.89	0.80	0.68	0.93	0.64	0.37	0.66	0.62	0.57	0.96	0.62	0.29	0.93	0.64	0.37	0.80	0.70	n/a
/e	25-1/4	(641)	0.91	0.81	0.69	0.97	0.68	0.39	0.67	0.63	0.58	1.00	0.67	0.31	0.97	0.68	0.39	0.83	0.71	0.55
(s)	26	(660)	0.93	0.82	0.69	1.00	0.70	0.40	0.68	0.63	0.58		0.70	0.33	1.00	0.70	0.40	0.84	0.73	0.56
ing	28	(711)	0.96	0.85	0.71		0.75	0.43	0.69	0.64	0.59		0.78	0.36		0.75	0.43	0.87	0.75	0.58
ac	30	(762)	0.99	0.87	0.72		0.80	0.46	0.70	0.65	0.59		0.87	0.40		0.80	0.46	0.90	0.78	0.60
s	36	(914)	1.00	0.94	0.77		0.96	0.55	0.74	0.68	0.61		1.00	0.53		0.96	0.55	0.99	0.85	0.66
	> 48	(1219)		1.00	0.86		1.00	0.74	0.82	0.74	0.65			0.82		1.00	0.74	1.00	0.99	0.76

#### Table 20 - Load adjustment factors for #9 rebar in uncracked concrete^{1,2,3}

#### Table 21 - Load adjustment factors for #9 rebar in cracked concrete^{1,2,3}

												Edg	je distar	nce in sh	iear					
			Spa	acing fa	ctor	Edge o	distance	factor	Spa	acing fac	ctor		<u></u>		To	o and av	vay	Conci	rete thic	kness
	#9		ii	n tensio	n	i	n tensioi	n	i	n shear	4	To	ward ed	ge	fr	om edg	e	fact	or in sh	ear⁵
crac	ked con	crete		$f_{AN}$			$f_{_{\rm RN}}$			$f_{AV}$			$f_{_{\rm RV}}$			$f_{\rm RV}$			$f_{_{\rm HV}}$	
Embe	dment	in.	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2
ł	1 _{ef}	(mm)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)
	1-3/4	(44)	n/a	n/a	n/a	0.41	0.39	0.38	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.01	n/a	n/a	n/a
Ē	5-5/8	(143)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a
٤ ۲	6	(152)	0.60	0.57	0.54	0.57	0.51	0.44	0.54	0.53	0.52	0.12	0.08	0.04	0.24	0.16	0.07	n/a	n/a	n/a
. <u> </u>	7	(178)	0.61	0.59	0.55	0.61	0.54	0.46	0.55	0.54	0.52	0.15	0.10	0.05	0.30	0.20	0.09	n/a	n/a	n/a
, Ê	8	(203)	0.63	0.60	0.56	0.65	0.57	0.48	0.55	0.54	0.52	0.19	0.12	0.06	0.37	0.24	0.11	n/a	n/a	n/a
l) si	9	(229)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.22	0.14	0.07	0.44	0.29	0.13	n/a	n/a	n/a
ues	10	(254)	0.66	0.62	0.57	0.74	0.63	0.51	0.57	0.55	0.53	0.26	0.17	0.08	0.52	0.34	0.16	n/a	n/a	n/a
ick	11	(279)	0.68	0.64	0.58	0.79	0.67	0.53	0.57	0.56	0.53	0.30	0.19	0.09	0.60	0.39	0.18	n/a	n/a	n/a
Ę	12	(305)	0.70	0.65	0.59	0.84	0.70	0.55	0.58	0.56	0.54	0.34	0.22	0.10	0.68	0.44	0.21	n/a	n/a	n/a
ete	12-7/8	(327)	0.71	0.66	0.60	0.88	0.73	0.56	0.59	0.57	0.54	0.38	0.25	0.11	0.76	0.49	0.23	0.59	n/a	n/a
ncr	13	(330)	0.71	0.66	0.60	0.89	0.73	0.56	0.59	0.57	0.54	0.39	0.25	0.12	0.77	0.50	0.23	0.59	n/a	n/a
S	14	(356)	0.73	0.67	0.60	0.94	0.77	0.58	0.60	0.57	0.54	0.43	0.28	0.13	0.86	0.56	0.26	0.62	n/a	n/a
a) /	16	(406)	0.76	0.70	0.62	1.00	0.84	0.62	0.61	0.58	0.55	0.53	0.34	0.16	1.00	0.68	0.32	0.66	n/a	n/a
0	16-1/4	(413)	0.77	0.70	0.62	1.00	0.85	0.63	0.61	0.58	0.55	0.54	0.35	0.16	1.00	0.70	0.32	0.66	0.58	n/a
ů,	18	(457)	0.80	0.72	0.63	1.00	0.91	0.66	0.62	0.59	0.55	0.63	0.41	0.19	1.00	0.82	0.38	0.70	0.61	n/a
sta	20	(508)	0.83	0.75	0.65	1.00	0.99	0.70	0.64	0.60	0.56	0.73	0.48	0.22	1.00	0.95	0.44	0.74	0.64	n/a
<u>0</u>	22	(559)	0.86	0.77	0.66	1.00	1.00	0.74	0.65	0.61	0.57	0.85	0.55	0.26	1.00	1.00	0.51	0.77	0.67	n/a
ð	24	(610)	0.89	0.80	0.68	1.00	1.00	0.78	0.66	0.62	0.57	0.97	0.63	0.29	1.00	1.00	0.58	0.81	0.70	n/a
e/	25-1/4	(641)	0.91	0.81	0.69	1.00	1.00	0.81	0.67	0.63	0.58	1.00	0.68	0.31	1.00	1.00	0.63	0.83	0.72	0.56
(s)	26	(660)	0.93	0.82	0.69	1.00	1.00	0.82	0.68	0.63	0.58	1.00	0.71	0.33	1.00	1.00	0.66	0.84	0.73	0.56
ng	28	(711)	0.96	0.85	0.71	1.00	1.00	0.87	0.69	0.64	0.59	1.00	0.79	0.37	1.00	1.00	0.73	0.87	0.76	0.58
aci	30	(762)	0.99	0.87	0.72	1.00	1.00	0.91	0.70	0.65	0.59	1.00	0.88	0.41	1.00	1.00	0.82	0.90	0.78	0.61
Sp	36	(914)	1.00	0.94	0.77	1.00	1.00	1.00	0.74	0.68	0.61	1.00	1.00	0.54	1.00	1.00	1.00	0.99	0.86	0.66
	> 48	(1219)	1.00	1.00	0.86	1.00	1.00	1.00	0.83	0.74	0.65	1.00	1.00	0.82	1.00	1.00	1.00	1.00	0.99	0.77

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{ef'} f_{AV}$  is applicable when edge distance,  $c < 3^*h_{ef'}$ . If  $c \ge 3^*h_{ef'}$  then  $f_{AV} = f_{AN}$ . 5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{ef'}$ . If  $c \ge 3^*h_{ef'}$  then  $f_{HV} = 1.0$ .

											Edg	ge distar	nce in sh	ear						
unora	#10 cked.co	ncrete	Spa ir	acing fao n tension f	ctor n	Edge o	distance n tension f	factor n	Spa i	acing fao n shear f	ctor	То	⊥ ward ed	ge	∥ To fr	o and av om edg	vay e	Concr fact	rete thic or in sho	kness ear⁵
		in	11 1/4	J AN	25	11 1/4	J _{RN}	25	11 1/4	J _{AV}	25	11 1/4	J _{RV}	25	11 1/4	J _{RV}	25	11 1/4	J _{HV}	25
Embe	dment	in.	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	20
r	l _{ef}	(mm)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)
Ê	1-3/4	(44)	n/a	n/a	n/a	0.24	0.17	0.09	n/a	n/a	n/a	0.02	0.01	0.00	0.03	0.02	0.01	n/a	n/a	n/a
Ē	6-1/4	(159)	0.59	0.57	0.54	0.33	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a
. <u>-</u>	7	(178)	0.60	0.58	0.55	0.35	0.24	0.14	0.54	0.53	0.52	0.13	0.08	0.04	0.26	0.17	0.08	n/a	n/a	n/a
É 9 (229)		0.62	0.59	0.55	0.37	0.26	0.15	0.55	0.54	0.52	0.16	0.10	0.05	0.31	0.20	0.10	n/a	n/a	n/a	
É	9	(229)	0.63	0.60	0.56	0.39	0.27	0.15	0.55	0.54	0.52	0.19	0.12	0.06	0.38	0.24	0.11	n/a	n/a	n/a
SSE	10	(254)	0.65	0.61	0.57	0.42	0.29	0.16	0.56	0.55	0.53	0.22	0.14	0.07	0.42	0.29	0.13	n/a	n/a	n/a
kne	11	(279)	0.66	0.62	0.57	0.44	0.31	0.17	0.57	0.55	0.53	0.25	0.16	0.08	0.44	0.31	0.15	n/a	n/a	n/a
hic	12	(305)	0.68	0.63	0.58	0.47	0.32	0.18	0.57	0.55	0.53	0.29	0.19	0.09	0.47	0.32	0.17	n/a	n/a	n/a
te t	13	(330)	0.69	0.64	0.59	0.49	0.34	0.19	0.58	0.56	0.54	0.33	0.21	0.10	0.49	0.34	0.19	n/a	n/a	n/a
cre	14	(356)	0.71	0.66	0.59	0.52	0.36	0.20	0.59	0.56	0.54	0.36	0.24	0.11	0.52	0.36	0.20	n/a	n/a	n/a
ouo	14-1/4	(362)	0.71	0.66	0.60	0.52	0.36	0.21	0.59	0.56	0.54	0.37	0.24	0.11	0.52	0.36	0.21	0.59	n/a	n/a
0/	15	(381)	0.72	0.67	0.60	0.54	0.38	0.21	0.59	0.57	0.54	0.40	0.26	0.12	0.54	0.38	0.21	0.60	n/a	n/a
(ca)	16	(406)	0.74	0.68	0.61	0.57	0.40	0.22	0.60	0.57	0.54	0.45	0.29	0.13	0.57	0.40	0.22	0.62	n/a	n/a
e e	17	(432)	0.75	0.69	0.61	0.60	0.42	0.24	0.60	0.58	0.55	0.49	0.32	0.15	0.60	0.42	0.24	0.64	n/a	n/a
and	18	(457)	0.77	0.70	0.62	0.64	0.44	0.25	0.61	0.58	0.55	0.53	0.35	0.16	0.64	0.44	0.25	0.66	0.57	n/a
eist	20	(508)	0.80	0.72	0.63	0.71	0.49	0.28	0.62	0.59	0.55	0.62	0.40	0.19	0.71	0.49	0.28	0.70	0.60	n/a
e 20 (000)		(559)	0.83	0.74	0.65	0.78	0.54	0.31	0.63	0.60	0.56	0.72	0.47	0.22	0.78	0.54	0.31	0.73	0.63	n/a
80 22 (555) 24 (610)		0.86	0.77	0.66	0.85	0.59	0.33	0.65	0.61	0.57	0.82	0.53	0.25	0.85	0.59	0.33	0.76	0.66	n/a	
$\frac{1}{26}$ 26 (660)		0.89	0.79	0.67	0.92	0.64	0.36	0.66	0.62	0.57	0.92	0.60	0.28	0.92	0.64	0.36	0.79	0.69	n/a	
(0) <u>28</u> (711)		0.91	0.81	0.69	0.99	0.69	0.39	0.67	0.63	0.58	1.00	0.67	0.31	0.99	0.69	0.39	0.82	0.71	0.55	
Bui 30 (76		(762)	0.94	0.83	0.70	1.00	0.74	0.42	0.68	0.64	0.58		0.74	0.35	1.00	0.74	0.42	0.85	0.74	0.57
pac	36	(914)	1.00	0.90	0.74		0.88	0.50	0.72	0.66	0.60		0.98	0.45		0.88	0.50	0.94	0.81	0.63
S	> 48	(1219)		1.00	0.82		1.00	0.67	0.79	0.72	0.63		1.00	0.70		1.00	0.67	1.00	0.94	0.72

Table 22 - Load adjustment factors for #10 rebar in uncracked concrete^{1,2,3}

Table 23 - Load adjustment factors for #10 rebar in cracked concrete^{1,2,3}

													Edg	je distar	nce in sh	lear				
			Spa	icing fac	ctor	Edge o	distance	factor	Spa	acing fac	ctor		1		∥ To	o and av	vav	Conci	rete thic	kness
	#10		ir	tensio	n	ir	n tensio	n	i	n shear	1	To	ward ed	ge	" fr	om edg	e	fact	or in sh	ear⁵
crac	ked con	crete		$f_{AN}$			$f_{\sf BN}$			$f_{AV}$			$f_{\rm BV}$	-		f _{RV}			$f_{\rm HV}$	
Embe	dment	in.	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25
ł	ا _م	(mm)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)
-	1-3/4	(44)	n/a	n/a	n/a	0.40	0.39	0.37	n/a	n/a	n/a	0.02	0.01	0.00	0.03	0.02	0.01	n/a	n/a	n/a
mu	6-1/4	(159)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a
1) -	7	(178)	0.60	0.58	0.55	0.58	0.52	0.45	0.54	0.53	0.52	0.13	0.08	0.04	0.26	0.17	0.08	n/a	n/a	n/a
.=	8	(203)	0.62	0.59	0.55	0.62	0.55	0.46	0.55	0.54	0.52	0.16	0.10	0.05	0.32	0.21	0.10	n/a	n/a	n/a
(h),	9	(229)	0.63	0.60	0.56	0.66	0.57	0.48	0.55	0.54	0.52	0.19	0.12	0.06	0.38	0.25	0.11	n/a	n/a	n/a
SS	10	(254)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.22	0.14	0.07	0.44	0.29	0.13	n/a	n/a	n/a
4ne	11	(279)	0.66	0.62	0.57	0.74	0.63	0.51	0.57	0.55	0.53	0.26	0.17	0.08	0.51	0.33	0.15	n/a	n/a	n/a
hict	12	(305)	0.68	0.63	0.58	0.78	0.66	0.53	0.57	0.55	0.53	0.29	0.19	0.09	0.58	0.38	0.18	n/a	n/a	n/a
e tl	13	(330)	0.69	0.64	0.59	0.82	0.69	0.54	0.58	0.56	0.54	0.33	0.21	0.10	0.66	0.43	0.20	n/a	n/a	n/a
cret	14	(356)	0.71	0.66	0.59	0.87	0.72	0.56	0.59	0.56	0.54	0.37	0.24	0.11	0.73	0.48	0.22	n/a	n/a	n/a
ono	14-1/4	(362)	0.71	0.66	0.60	0.88	0.73	0.56	0.59	0.57	0.54	0.38	0.25	0.11	0.75	0.49	0.23	0.59	n/a	n/a
0/	15	(381)	0.72	0.67	0.60	0.91	0.75	0.57	0.59	0.57	0.54	0.41	0.26	0.12	0.82	0.53	0.25	0.61	n/a	n/a
Ca)	16	(406)	0.74	0.68	0.61	0.96	0.78	0.59	0.60	0.57	0.54	0.45	0.29	0.14	0.90	0.58	0.27	0.63	n/a	n/a
e	17	(432)	0.75	0.69	0.61	1.00	0.81	0.61	0.60	0.58	0.55	0.49	0.32	0.15	0.98	0.64	0.30	0.64	n/a	n/a
and	18	(457)	0.77	0.70	0.62		0.85	0.62	0.61	0.58	0.55	0.54	0.35	0.16	1.00	0.70	0.32	0.66	0.57	n/a
eist	20	(508)	0.80	0.72	0.63		0.91	0.66	0.62	0.59	0.55	0.63	0.41	0.19		0.82	0.38	0.70	0.61	n/a
je (	22	(559)	0.83	0.74	0.65		0.98	0.69	0.63	0.60	0.56	0.72	0.47	0.22		0.94	0.44	0.73	0.63	n/a
edé	24	(610)	0.86	0.77	0.66		1.00	0.73	0.65	0.61	0.57	0.82	0.54	0.25		1.00	0.50	0.77	0.66	n/a
/ (	26	(660)	0.89	0.79	0.67			0.77	0.66	0.62	0.57	0.93	0.60	0.28			0.56	0.80	0.69	n/a
g (s	28	(711)	0.91	0.81	0.69			0.81	0.67	0.63	0.58	1.00	0.68	0.31			0.63	0.83	0.72	0.55
cij	30	(762)	0.94	0.83	0.70			0.85	0.68	0.64	0.58		0.75	0.35			0.70	0.86	0.74	0.57
pa	36	(914)	1.00	0.90	0.74			0.97	0.72	0.66	0.60		0.98	0.46			0.91	0.94	0.81	0.63
S	> 48	(1219)		1.00	0.82			1.00	0.79	0.72	0.63		1.00	0.70			1.00	1.00	0.94	0.73

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. 3 To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{er} f_{AV}$  is applicable when edge distance,  $c < 3^*h_{er}$ . If  $c \ge 3^*h_{er}$ , then  $f_{AV} = f_{AN}$ . 5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{er}$ . If  $c \ge 3^*h_{er}$ , then  $f_{HV} = 1.0$ .



#### HIT-RE 500 V3 adhesive with HAS threaded rod



#### Figure 4 - Hilti HAS threaded rod installation conditions

Cracked o	r uncracked concrete	Permis	ssible drilling methods	Permissib	le concrete conditions
					Dry concrete
			Hammer drilling		Water-saturated concrete
	Cracked and		with carbide-tipped drill bit	Ð	Water-filled holes
	uncracked concrete				Submerged (underwater)
			Hilti TE-CD or TE-YD hollow drill bit and VC 20/40 Vacuum		Dry concrete
			Diamond core drill bit with Hilti TE-YRT roughening tool		Water-saturated concrete
			5		Dry concrete
	Uncracked concrete		Diamond core drill bit		Water-saturated concrete

#### Table 24 - Hilti HAS threaded rod installation specifications

Catting information		Cumbal	Linita		1	Nominal	rod dia	meter, o	d	
Setting information		Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Nominal bit diameter	er	d。	in.	7/16	9/16	3/4	7/8	1	1-1/8	1-3/8
		h	in.	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	5
Effective	minimum	ef,min	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
embedment	movimum	h	in.	7-1/2	10	12-1/2	15	17-1/2	20	25
	maximum	ef,max	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
Diameter	through-set		in.	1/2	5/8	13/16 ¹	15/16 ¹	1-1/8 ¹	1-1/4 ¹	1-1/2 ¹
of fixture hole	preset	(C5000)	in.	7/16	9/16	11/16	13/16	15/16	1-1/8	1-3/8
Installation torque	•	<b>–</b>	ft-lb	15	30	60	100	125	150	200
Installation torque		inst	(Nm)	(20)	(40)	(80)	(136)	(169)	(203)	(271)
Minimum concrete	thickness	h _{min}	in. (mm)	h _{ef} +1 (h _{ef} -	I-1/4 ⊦30)			h _{ef} +2d _o		
Minimum odgo dist	$anoo^2$		in.	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	6-1/4
Minimum edge dist	ance	Umin	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(159)
Minimum anabar ar		_	in.	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	6-1/4
winimum anchor sp	Dacing	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(159)









1 Install using (2) washers. See Figure 5.

2 Edge distance of 1-3/4-inch (44mm) is permitted provided the installation torque is reduced to 0.30  $T_{inst}$ 

for 5d < s < 16-in. and to  $0.5T_{inst}$  for s >16-in.

#### Table 25 - Hilti HIT-RE 500 V3 adhesive design strength with concrete / bond failure for threaded rod in uncracked concrete^{1,2,3,4,5,6,7,8,9,11}

Nominal			Tensior	— ΦN _n			Shear	— ΦV _n	
anchor	Effective	f' = 2,500 psi	f' = 3.000 psi	f' = 4.000 psi	f' = 6.000 psi	f' = 2,500 psi	f' = 3.000 psi	f' = 4,000 psi	f' = 6.000 psi
diameter	embedment	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)
in.	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
	2-3/8	2 855	3 125	3 610	4 425	3 075	3 370	3 890	4 765
	(60)	(12.7)	(13.9)	(16.1)	(19.7)	(13.7)	(15.0)	(17.3)	(21.2)
	3-3/8	4,835	5,300	6,115	7,490	10,415	11,410	13,175	16,135
	(86)	(21.5)	(23.6)	(27.2)	(33.3)	(46.3)	(50.8)	(58.6)	(71.8)
3/8	4-1/2	7,445	8,155	9,225	10,210	16,035	17,570	19,865	21,985
	(114)	(33.1)	(36.3)	(41.0)	(45.4)	(71.3)	(78.2)	(88.4)	(97.8)
	7-1/2	13,670	14,305	15,375	17,015	29,440	30,815	33,110	36,645
	(191)	(60.8)	(63.6)	(68.4)	(75.7)	(131.0)	(137.1)	(147.3)	(163.0)
	2-3/4	3,555	3,895	4,500	5,510	7,660	8,395	9,690	11,870
	(70)	(15.8)	(17.3)	(20.0)	(24.5)	(34.1)	(37.3)	(43.1)	(52.8)
	4-1/2	7,445	8,155	9,420	11,535	16,035	17,570	20,285	24,845
1/2	(114)	(33.1)	(36.3)	(41.9)	(51.3)	(71.3)	(78.2)	(90.2)	(110.5)
1/2	6	11,465	12,560	14,500	17,535	24,690	27,045	31,230	37,775
ļ	(152)	(51.0)	(55.9)	(64.5)	(78.0)	(109.8)	(120.3)	(138.9)	(168.0)
	10	23,485	24,580	26,410	29,230	50,580	52,940	56,885	62,955
	(254)	(104.5)	(109.3)	(117.5)	(130.0)	(225.0)	(235.5)	(253.0)	(280.0)
	3-1/8	4,310	4,720	5,450	6,675	9,280	10,165	11,740	14,380
	(79)	(19.2)	(21.0)	(24.2)	(29.7)	(41.3)	(45.2)	(52.2)	(64.0)
	5-5/8	10,405	11,400	13,165	16,120	22,415	24,550	28,350	34,720
5/8 ¹⁰	(143)	(46.3)	(50.7)	(58.6)	(/1./)	(99.7)	(109.2)	(126.1)	(154.4)
,	7-1/2	16,020	17,550	20,265	24,820	34,505	37,800	43,650	53,455
	(191)	(71.3)	(78.1)	(90.1)	(110.4)	(153.5)	(168.1)	(194.2)	(237.8)
	(210)	(152.2)	36,900	(176 4)	43,005	(220.2)	79,400	(270.0)	94,520
	3-1/2	5 105	5 595	6 460	7 910	(330.3)	12 050	(379.9)	(420.4)
	(89)	(22 7)	(24 9)	(28.7)	(35.2)	(48.9)	(53.6)	(61.9)	(75.8)
	6-3/4	13 680	14 985	17.305	21 190	29.460	32 275	37 265	45 645
	(171)	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	(165.8)	(203.0)
3/410	9	21.060	23.070	26.640	32.625	45.360	49.690	57.375	70.270
	(229)	(93.7)	(102.6)	(118.5)	(145.1)	(201.8)	(221.0)	(255.2)	(312.6)
	15	45,315	49,640	55,035	60,905	97,600	106,915	118,535	131,180
	(381)	(201.6)	(220.8)	(244.8)	(270.9)	(434.1)	(475.6)	(527.3)	(583.5)
	3-1/2	5,105	5,595	6,460	7,910	11,000	12,050	13,915	17,040
	(89)	(22.7)	(24.9)	(28.7)	(35.2)	(48.9)	(53.6)	(61.9)	(75.8)
	7-7/8	17,235	18,885	21,805	26,705	37,125	40,670	46,960	57,515
7/810	(200)	(76.7)	(84.0)	(97.0)	(118.8)	(165.1)	(180.9)	(208.9)	(255.8)
1/0	10-1/2	26,540	29,070	33,570	41,115	57,160	62,615	72,300	88,550
	(267)	(118.1)	(129.3)	(149.3)	(182.9)	(254.3)	(278.5)	(321.6)	(393.9)
	17-1/2	57,100	62,550	71,740	79,395	122,990	134,730	154,520	171,005
	(445)	(254.0)	(278.2)	(319.1)	(353.2)	(547.1)	(599.3)	(687.3)	(760.7)
	4	6,240	6,835	7,895	9,665	13,440	14,725	17,000	20,820
	(102)	(27.8)	(30.4)	(35.1)	(43.0)	(59.8)	(65.5)	(75.6)	(92.6)
	9 (220)	21,060	23,070	26,640	32,625	45,360	49,690	57,375	(010.6)
1 ¹⁰	(229)	(93.7)	(102.0)	(118.5)	(145.1)	(201.0)	(221.0)	(200.2)	109 100
	(305)	(1// 2)	(158 0)	(182 /)	(223.4)	(310 6)	(3/0.3)	(302 0)	(/81 3)
	20	69 765	76.425	88 245	99.635	150 265	164 605	190.070	21/ 595
	(508)	(310.3)	(340 0)	(392 5)	(443 2)	(668 4)	(732.2)	(845 5)	(954 6)
	5	8 720	9 555	11 030	13 510	18 785	20.575	23 760	29 100
	(127)	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)
	11-1/4	29,430	32,240	37,230	45,595	63,395	69,445	80,185	98,205
	(286)	(130.9)	(143.4)	(165.6)	(202.8)	(282.0)	(308.9)	(356.7)	(436.8)
1-1/410	15	45,315	49,640	57,320	70,200	97,600	106,915	123,455	151,200
	(381)	(201.6)	(220.8)	(255.0)	(312.3)	(434.1)	(475.6)	(549.2)	(672.6)
	25	97,500	106,805	123,330	142,175	210,000	230,045	265,630	306,220
	(635)	(433.7)	(475.1)	(548.6)	(632.4)	(934.1)	(1023.3)	(1181.6)	(1362.1)

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength (factored resistance) value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Apply spacing, edge distance, and concrete thickness factors in Tables 30-41 as necessary to the above values. Compare to the steel values in Table 29. 4

The lesser of the values is to be used for the design.

5

The lesser of the values is to be been used on the design. Data is for temperature range A: Max. short term temperature =  $130^{\circ}F$  ( $55^{\circ}C$ ), max. long term temperature =  $110^{\circ}F$  ( $43^{\circ}C$ ). For temperature range B: Max. short term temperature =  $176^{\circ}F$  ( $80^{\circ}C$ ), max. long term temperature =  $110^{\circ}F$  ( $43^{\circ}C$ ) multiply above values by 0.69.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Tabular values are for dry or water saturated concrete conditions 6

For water-filled drilled holes multiply design strength by 0.51.

For submerged (under water) applications multiply design strength by 0.45. Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by  $\lambda_a$  as follows: 8

9

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ . Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. For diamond core drilling, except as indicated in note 10, multiply above values by 0.55.

Diamond core drilling is not permitted for water-filled or underwater (submerged) applications. 10 Diamond core drilling with Hilti TE-YRT roughening tool is permitted for 5/8", 3/4", 7/8", 1", and 1 1/4" diameter anchors for dry and water-saturated concrete conditions. See Table 27.

11 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.



#### Table 26 - Hilti HIT-RE 500 V3 adhesive design strength with concrete / bond failure for threaded rod in cracked concrete^{1,2,3,4,5,6,7,8,9,11}

			Tension	ι — ΦΝ _n			Shear	— ΦV _n	
Nominal anchor diameter in	Effective embedment in (mm)	f' = 2,500 psi (17.2 MPa) lb (kN)	f' = 3,000 psi (20.7 MPa)	f'_ = 4,000 psi (27.6 MPa) lb (kN)	f' = 6,000 psi (41.4 MPa) lb (kN)	f′ = 2,500 psi (17.2 MPa) lb (kN)	f' = 3,000 psi (20.7 MPa)	f'_ = 4,000 psi (27.6 MPa) lb (kN)	f'_ = 6,000 psi (41.4 MPa) lb (kN)
	2-3/8	2 020	2 215	2 500	2 655	2 180	2 385	2 690	2 860
	(60)	(9.0)	(9.9)	(11 1)	(11.8)	(9.7)	(10.6)	(12.0)	(12 7)
-	3-3/8	3.310	3.400	3.550	3.770	7.125	7.325	7.645	8.125
	(86)	(14.7)	(15.1)	(15.8)	(16.8)	(31.7)	(32.6)	(34.0)	(36.1)
3/8	4-1/2	4,410	4,535	4,735	5,030	9,500	9,765	10,195	10,835
	(114)	(19.6)	(20.2)	(21.1)	(22.4)	(42.3)	(43.4)	(45.3)	(48.2)
	7-1/2	7,350	7,555	7,890	8,385	15,835	16,275	16,990	18,055
	(191)	(32.7)	(33.6)	(35.1)	(37.3)	(70.4)	(72.4)	(75.6)	(80.3)
	2-3/4	2,520	2,760	3,185	3,905	5,425	5,945	6,865	8,405
	(70)	(11.2)	(12.3)	(14.2)	(17.4)	(24.1)	(26.4)	(30.5)	(37.4)
	4-1/2	5,275	5,780	6,260	6,655	11,360	12,445	13,485	14,330
1/2	(114)	(23.5)	(25.7)	(27.0)	(29.0)	(50.5)	(55.4)	(60.0)	(03.7)
	(152)	(34.6)	(35.6)	(37 1)	(39.5)	(74.5)	(76.6)	(80.0)	(85.0)
-	10	12 965	13 325	13 915	14 785	27 930	28 705	29.970	31 850
	(254)	(57.7)	(59.3)	(61.9)	(65.8)	(124.2)	(127.7)	(133.3)	(141.7)
	3-1/8	3,050	3,345	3,860	4,730	6,575	7,200	8,315	10,185
	(79)	(13.6)	(14.9)	(17.2)	(21.0)	(29.2)	(32.0)	(37.0)	(45.3)
	5-5/8	7,370	8,075	9,325	10,315	15,875	17,390	20,080	22,215
5/810	(143)	(32.8)	(35.9)	(41.5)	(45.9)	(70.6)	(77.4)	(89.3)	(98.8)
5/0	7-1/2	11,350	12,395	12,940	13,755	24,440	26,695	27,875	29,620
	(191)	(50.5)	(55.1)	(57.6)	(61.2)	(108.7)	(118.7)	(124.0)	(131.8)
	12-1/2	20,100	20,660	21,570	22,920	43,295	44,495	46,460	49,370
	(318)	(89.4)	(91.9)	(95.9)	(102.0)	(192.6)	(197.9)	(206.7)	(219.6)
	3-1/2	3,620	3,905	4,575	5,605	(24.7)	0,000	9,000	(52.7)
-	6-3/4	9 690	10.615	12 255	14 735	20.870	22 860	26.395	31 740
	(171)	(43.1)	(47.2)	(54.5)	(65.5)	(92.8)	(101.7)	(117.4)	(141.2)
3/410	9	14,920	16,340	18,490	19,650	32,130	35,195	39,820	42,320
	(229)	(66.4)	(72.7)	(82.2)	(87.4)	(142.9)	(156.6)	(177.1)	(188.2)
	15	28,715	29,510	30,815	32,745	61,850	63,565	66,370	70,530
	(381)	(127.7)	(131.3)	(137.1)	(145.7)	(275.1)	(282.7)	(295.2)	(313.7)
	3-1/2	3,620	3,965	4,575	5,605	7,790	8,535	9,855	12,070
	(89)	(16.1)	(17.6)	(20.4)	(24.9)	(34.7)	(38.0)	(43.8)	(53.7)
	(-7/8	12,210	13,375	15,445	18,915	26,300	28,810	33,265	40,740
7/810	(200)	(54.3)	(59.5)	(00.7)	(04.1)	(117.0)	(120.2)	(140.0)	(101.2)
	(267)	(83.6)	20,390	(105.8)	(118.0)	(180 1)	(197 3)	(227.8)	(254.2)
-	17-1/2	38,775	39,850	41,605	44,215	83,510	85,825	89,610	95,230
	(445)	(172.5)	(177.3)	(185.1)	(196.7)	(371.5)	(381.8)	(398.6)	(423.6)
	4	4,420	4,840	5,590	6,845	9,520	10,430	12,040	14,750
	(102)	(19.7)	(21.5)	(24.9)	(30.4)	(42.3)	(46.4)	(53.6)	(65.6)
	9	14,920	16,340	18,870	23,110	32,130	35,195	40,640	49,775
110	(229)	(66.4)	(72.7)	(83.9)	(102.8)	(142.9)	(156.6)	(180.8)	(221.4)
	12	22,965	25,160	29,050	34,650	49,465	54,190	62,570	74,630
	(305)	(102.2)	(111.9)	(129.2)	(154.1)	(220.0)	(241.0)	(278.3)	(332.0)
	20	49,415	52,045	54,340	57,750	106,435	112,100	117,045	124,385
	(000)	(219.0) 6.175	6 765	7 815	(200.9) 0.570	(473.4)	(490.0)	(020.0) 16.830	20 610
	(127)	(27.5)	(30.1)	(34.8)	9,570	(59.2)	(64.8)	(74.9)	(91.7)
	11-1/4	20,850	22,840	26.370	32,295	44,905	49,190	56,800	69,565
	(286)	(92.7)	(101.6)	(117.3)	(143.7)	(199.7)	(218.8)	(252.7)	(309.4)
1-1/410	15	32,095	35,160	40,600	49,725	69,135	75,730	87,445	107,100
	(381)	(142.8)	(156.4)	(180.6)	(221.2)	(307.5)	(336.9)	(389.0)	(476.4)
	25	69,060	75,655	80,800	85,865	148,750	162,945	174,030	184,945
	(635)	(307.2)	(336.5)	(359.4)	(381.9)	(661.7)	(724.8)	(774.1)	(822.7)

See Section 3.1.8 for explanation on development of load values. 2 See Section 3.1.8 to convert design strength value to ASD value.

Linear interpolation between embedment depths and concrete compressive strengths is not permitted. 3

Apply spacing, edge distance, and concrete thickness factors in tables 30-41 as necessary to the above values. Compare to the steel values in table 29. The lesser of the values is to be 4 used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

For temperature range B. Max. short term temperature = 106°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Tabular values are for dry or water saturated concrete conditions. For water-filled drilled holes multiply design strength by 0.51. 6

For submerged (under water) applications multiply design strength by 0.44. Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by Å_a as follows:
 For sand-lightweight, Å_a = 0.51. For all-lightweight concrete multiply design strength by Å_a as follows:
 For sand-lightweight on concrete only. For lightweight concrete multiply design strength by Å_a as follows:
 Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. Diamond core drilling with Hilt TE-YRT roughening tool is permitted for 5/8" 3/4", 7/8", 1", and 1 1/4" diameter anchors for dry and water-saturated concrete conditions. See Table 28
 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by α_{see} indicated below.

See section 3.1.8 for additional information on seismic applications.

See section 3.1.8 for additional information 3/8-in. diameter -  $\alpha_{sele} = 0.69$ 1/2-in. diameter -  $\alpha_{sele} = 0.70$ 5/8-in. diameter -  $\alpha_{sele} = 0.71$ 3/4-in. diameter and larger -  $\alpha_{sele} = 0.75$ 

N			Tension	— ΦΝ,			Shear	_ ΦV.	
Nominai	Effective	f' = 2.500 poi	f' = 2,000 pai	f' = 1 000 poi	f' = 6,000 poi	f' = 0.500 poi	f' = 2.000 pai	f' = 4 000 poi	f' = 6 000 poi
diameter	embedment	$\int_{c} - 2,300 \text{ psi}$	(20.7  MPa)	(27.6  MPa)	$\int_{c}^{c} - 0,000 \text{ psr}$	$\int_{c} = 2,300 \text{ psi}$	$\int_{0}^{2} - 3,000 \text{ psi}$	$\int_{c}^{27} = 4,000 \text{ psr}$	$\int_{c}^{c} = 0,000 \text{ psi}$
in	in (mm)	(17.2  Wir a)	lb (kN)	(27.0  kN)	lb (kN)	(17.2  Wir a)	(20.7  kN)	(27.0  km)	(41.4  INI a)
	0.1/0	4 210	4 700	E 450		0.080	10 105	11 740	14,090
	3-1/0	4,310	4,720	5,450	0,075	9,200	10,105	(52.0)	(64.0)
	(79)	(19.2)	(21.0)	(24.2)	(29.7)	(41.3)	(45.2)	(52.2)	(04.0)
	(143)	(46.3)	(50.7)	(58.6)	(70.6)	(00.7)	(109.2)	(126,330	(152.0)
5/8	7 1/0	16.020	17 550	20.265	21 155	34.505	37 800	(120.1)	(152.0)
	(191)	(71.3)	(78.1)	(90.1)	(94.1)	(153.5)	(168 1)	(194.2)	(202 7)
	12-1/2	34.470	35.255	35 255	35 255	74 245	75.940	75.940	75.940
	(318)	(153.3)	(156.8)	(156.8)	(156.8)	(330.3)	(337.8)	(337.8)	(337.8)
	3-1/2	5 105	5 595	6.460	7 910	11 000	12 050	13 915	17 040
	(89)	(22.7)	(24.9)	(28.7)	(35.2)	(48.9)	(53.6)	(61.9)	(75.8)
	6-3/4	13,680	14.985	17.305	21,190	29.460	32,275	37,265	45.645
	(171)	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	(165.8)	(203.0)
3/4	9	21.060	23.070	26.640	29.360	45.360	49.690	57.375	63.235
	(229)	(93.7)	(102.6)	(118.5)	(130.6)	(201.8)	(221.0)	(255.2)	(281.3)
	11-1/4	29,430	32,240	36,700	36,700	63,395	69,445	79,045	79,045
	(286)	(130.9)	(143.4)	(163.2)	(163.2)	(282.0)	(308.9)	(351.6)	(351.6)
	3-1/2	5,105	5,595	6,460	7,910	11,000	12,050	13,915	17,040
	(89)	(22.7)	(24.9)	(28.7)	(35.2)	(48.9)	(53.6)	(61.9)	(75.8)
	7-7/8	17,235	18,885	21,805	26,705	37,125	40,670	46,960	57,515
7/0	(200)	(76.7)	(84.0)	(97.0)	(118.8)	(165.1)	(180.9)	(208.9)	(255.8)
1/0	10-1/2	26,540	29,070	33,570	38,275	57,160	62,615	72,300	82,435
	(267)	(118.1)	(129.3)	(149.3)	(170.3)	(254.3)	(278.5)	(321.6)	(366.7)
	17-1/2	57,100	62,550	63,790	63,790	122,990	134,730	137,390	137,390
	(445)	(254.0)	(278.2)	(283.8)	(283.8)	(547.1)	(599.3)	(611.1)	(611.1)
	4	6,240	6,835	7,895	9,665	13,440	14,725	17,000	20,820
	(102)	(27.8)	(30.4)	(35.1)	(43.0)	(59.8)	(65.5)	(75.6)	(92.6)
	9	21,060	23,070	26,640	32,625	45,360	49,690	57,375	70,270
1	(229)	(93.7)	(102.6)	(118.5)	(145.1)	(201.8)	(221.0)	(255.2)	(312.6)
·	12	32,425	35,520	41,015	48,030	69,835	76,500	88,335	103,445
	(305)	(144.2)	(158.0)	(182.4)	(213.6)	(310.6)	(340.3)	(392.9)	(460.1)
	20	69,765	76,425	80,050	80,050	150,265	164,605	172,410	172,410
	(508)	(310.3)	(340.0)	(356.1)	(356.1)	(668.4)	(732.2)	(766.9)	(766.9)
	5	8,720	9,555	11,030	13,510	18,785	20,575	23,760	29,100
	(127)	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)
	11-1/4	29,430	32,240	37,230	45,595	63,395	69,445	80,185	98,205
1-1/4	(286)	(130.9)	(143.4)	(165.6)	(202.8)	(282.0)	(308.9)	(356.7)	(436.8)
, ,	15	45,315	49,640	57,320	68,535	97,600	106,915	123,455	147,615
	(381)	(201.6)	(220.8)	(255.0)	(304.9)	(434.1)	(475.6)	(549.2)	(656.6)
	25	97,500	106,805	114,225	114,225	210,000	230,045	246,025	246,025
	(635)	(433.7)	(475.1)	(508.1)	(508.1)	(934.1)	(1023.3)	(1094.4)	(1094.4)

#### Table 27 - Hilti HIT-RE 500 V3 for Core Drilled Holes with TE-YRT Roughening Tool adhesive design strength with concrete / bond failure for threaded rod in uncracked concrete^{1,2,3,4,5,6,7,8,9}

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 30-41 as necessary to the above values. Compare to the steel values in table 29. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry or water saturated concrete conditions. Water-filled and submerged (under water) applications are not permitted for this hole preparation method.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda_n$  as follows:

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ .

9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

3.2.3



Nominal			Tension	φΝ _n			Shear	— ΦV _n	
anchor	Effective	$f'_{c} = 2,500 \text{ psi}$	<i>f</i> ′ _c = 3,000 psi	<i>f</i> ′ _c = 4,000 psi	<i>f</i> ′ _c = 6,000 psi	<i>f</i> ′ _c = 2,500 psi	<i>f</i> ′ _c = 3,000 psi	<i>f</i> ′ _c = 4,000 psi	<i>f</i> ′ _c = 6,000 psi
diameter	embedment	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)
in.	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
	3-1/8	3,050	3,345	3,510	3,510	6,575	7,200	7,560	7,560
	(79)	(13.6)	(14.9)	(15.6)	(15.6)	(29.2)	(32.0)	(33.6)	(33.6)
	5-5/8	6,320	6,320	6,320	6,320	13,605	13,605	13,605	13,605
5/8	(143)	(28.1)	(28.1)	(28.1)	(28.1)	(60.5)	(60.5)	(60.5)	(60.5)
5/0	7-1/2	8,425	8,425	8,425	8,425	18,145	18,145	18,145	18,145
	(191)	(37.5)	(37.5)	(37.5)	(37.5)	(80.7)	(80.7)	(80.7)	(80.7)
	12-1/2	14,040	14,040	14,040	14,040	30,240	30,240	30,240	30,240
	(318)	(62.5)	(62.5)	(62.5)	(62.5)	(134.5)	(134.5)	(134.5)	(134.5)
	3-1/2	3,620	3,965	4,575	4,690	7,790	8,535	9,855	10,100
	(89)	(16.1)	(17.6)	(20.4)	(20.9)	(34.7)	(38.0)	(43.8)	(44.9)
	6-3/4	9,045	9,045	9,045	9,045	19,485	19,485	19,485	19,485
3/4	(171)	(40.2)	(40.2)	(40.2)	(40.2)	(86.7)	(86.7)	(86.7)	(86.7)
-, -	9	12,060	12,060	12,060	12,060	25,975	25,975	25,975	25,975
	(229)	(53.6)	(53.6)	(53.6)	(53.6)	(115.5)	(115.5)	(115.5)	(115.5)
	11-1/4	15,075	15,075	15,075	15,075	32,470	32,470	32,470	32,470
	(286)	(67.1)	(67.1)	(67.1)	(67.1)	(144.4)	(144.4)	(144.4)	(144.4)
	3-1/2	3,620	3,965	4,575	5,440	7,790	8,535	9,855	11,720
	(89)	(16.1)	(17.6)	(20.4)	(24.2)	(34.7)	(38.0)	(43.8)	(52.1)
	7-7/8	12,210	12,240	12,240	12,240	26,300	26,365	26,365	26,365
7/8	(200)	(54.3)	(54.4)	(54.4)	(34.4)	(117.0)	(117.3)	(117.3)	(117.3)
	10-1/2	(72.6)	(72.6)	(72.6)	(72.6)	35,155	35,155	35,155	35,155
	(207)	(72.0)	(72.0)	(72.0)	(72.0)	(130.4)	(130.4)	(130.4)	(150.4)
	(115)	(121.0)	(121.0)	(121.0)	(121.0)	(260.6)	(260.6)	(260.6)	(260.6)
	(445)	4 420	4 840	5 590	6.845	9 520	10.430	12 040	14 750
	(102)	(19.7)	(21.5)	(24.9)	(30.4)	(12 3)	(46.4)	(53.6)	(65.6)
	9	14 920	15 990	15 990	15 990	32 130	34 440	34 440	34 440
	(229)	(66.4)	(71.1)	(71.1)	(71.1)	(142.9)	(153.2)	(153.2)	(153.2)
1	12	21.320	21.320	21.320	21.320	45.920	45.920	45.920	45.920
	(305)	(94.8)	(94.8)	(94.8)	(94.8)	(204.3)	(204.3)	(204.3)	(204.3)
	20	35,530	35,530	35,530	35,530	76,530	76,530	76,530	76,530
	(508)	(158.0)	(158.0)	(158.0)	(158.0)	(340.4)	(340.4)	(340.4)	(340.4)
	5	6,175	6,765	7,815	9,570	13,305	14,575	16,830	20,610
	(127)	(27.5)	(30.1)	(34.8)	(42.6)	(59.2)	(64.8)	(74.9)	(91.7)
	11-1/4	20,850	22,840	23,690	23,690	44,905	49,190	51,025	51,025
1 1 / /	(286)	(92.7)	(101.6)	(105.4)	(105.4)	(199.7)	(218.8)	(227.0)	(227.0)
1-1/4	15	31,590	31,590	31,590	31,590	68,035	68,035	68,035	68,035
	(381)	(140.5)	(140.5)	(140.5)	(140.5)	(302.6)	(302.6)	(302.6)	(302.6)
	25	52,645	52,645	52,645	52,645	113,390	113,390	113,390	113,390
	(635)	(234.2)	(234.2)	(234.2)	(234.2)	(504.4)	(504.4)	(504.4)	(504.4)

### Table 28 - Hilti HIT-RE 500 V3 for Core Drilled Holes with TE-YRT Roughening Tool adhesive design strength with concrete / bond failure for threaded rod in cracked concrete^{1,2,3,4,5,6,7,8,9}

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 30-41 as necessary to the above values. Compare to the steel values in table 29. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry or water saturated concrete conditions. Water-filled and submerged (under water) applications are not permitted for this hole preparation method.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda_a$  as follows:

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ .

9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by  $\alpha_{seis}=0.75$ . See section 3.1.8 for additional information on seismic applications.

	HAS-V AS	/-36 / HAS-V-3 TM F1554 Gr.3	36 HDG 36 ^{4,6}	HAS-E AST	-55 / HAS-E-5 M F1554 Gr. 5	55 HDG 55 ^{4,5,6}	HAS-B- AS AST	105 / HAS-B- TM A193 B7 a M F 1554 Gr.1	105 HDG and 105 ^{4,6}	HAS ASTM ASTM A	S-R stainless : F593 (3/8-in t \193 (1-1/8-in	steel to 1-in)⁵ to 2-in)⁴
Nominal anchor diameter in.	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa,eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa,eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa,eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa,eq} Ib (kN)
2 /0	3,370	1,750	1,050	4,360	2,270	2,270	7,270	3,780	3,780	5,040	2,790	2,230
3/0	(15.0)	(7.8)	(4.7)	(19.4)	(10.1)	(10.1)	(32.3)	(16.8)	(16.8)	(22.4)	(12.4)	(9.9)
1/2	6,175	3,210	1,925	7,985	4,150	4,150	13,305	6,920	6,920	9,225	5,110	4,090
1/2	(27.5)	(14.3)	(8.6)	(35.5)	(18.5)	(18.5)	(59.2)	(30.8)	(30.8)	(41.0)	(22.7)	(18.2)
5/8	9,835	5,110	3,065	12,715	6,610	6,610	21,190	11,020	11,020	14,690	8,135	6,510
5/0	(43.7)	(22.7)	(13.6)	(56.6)	(29.4)	(29.4)	(94.3)	(49.0)	(49.0)	(65.3)	(36.2)	(29.0)
3//	14,550	7,565	4,540	18,820	9,785	9,785	31,360	16,310	16,310	18,485	10,235	8,190
0/4	(64.7)	(33.7)	(20.2)	(83.7)	(43.5)	(43.5)	(139.5)	(72.6)	(72.6)	(82.2)	(45.5)	(36.4)
7/8	20,085	10,445	6,265	25,975	13,505	13,505	43,285	22,510	22,510	25,510	14,125	11,300
1/0	(89.3)	(46.5)	(27.9)	(115.5)	(60.1)	(60.1)	(192.5)	(100.1)	(100.1)	(113.5)	(62.8)	(50.3)
	26,350	13,700	8,220	34,075	17,720	17,720	56,785	29,530	29,530	33,465	18,535	14,830
	(117.2)	(60.9)	(36.6)	(151.6)	(78.8)	(78.8)	(252.6)	(131.4)	(131.4)	(148.9)	(82.4)	(66.0)
1-1/4	42,160	21,920	13,150	54,515	28,345	28,345	90,855	47,245	47,245	41,430	21,545	17,235
1 1/4	(187.5)	(97.5)	(58.5)	(242.5)	(126.1)	(126.1)	(404.1)	(210.2)	(210.2)	(184.3)	(95.8)	(76.7)

#### Table 29 - Steel design strength for Hilti HAS threaded rods for use with ACI 318-14 Chapter 17

Tensile = φ A_{se,N} f_{uta} as noted in ACI 318-14 17.4.1.2
 Shear = φ 0.60 A_{se,V} f_{uta} as noted in ACI 318-14 17.5.1.2b.
 Seismic Shear = α_{Vaeie} φ V_{sa} : Reduction factor for seismic shear only. See ACI 318 for additional information on seismic applications.
 HAS-V, HAS-E (3/8-in to 1-1/4-in), HAS-B, and HAS-R (Class 1; 1-1/4-in) threaded rods are considered ductile steel elements (including HDG rods).

5 HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements.

6 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.



#### Table 30 - Load adjustment factors for 3/8-in. diameter threaded rods in uncracked concrete^{1,2,3}

																	Edge	distar	nce in :	shear						
	3/8-ir	ı.	s	pacin	g facto	or	Edg	e dista	ince fa	actor	s	pacing	g facto	or			L		l II	To an	d awa	y	Cor	ncrete	thickn	iess
ι	, Incrack	ked		in ter	nsion			in ter	nsion			in sh	iear ⁴		-	Toward	d edge	•		from	edge	, ,	fa	actor in	n shea	.r⁵
	concre	te		f	ΔΝ			f	RN			f	۵۷			f	RV -			f	- RV			f	HV	
Emb	edment	in.	2-3/8	3-3/8	4-1/2	7-1/2	2-3/8	3-3/8	4-1/2	7-1/2	2-3/8	3-3/8	4-1/2	7-1/2	2-3/8	3-3/8	4-1/2	7-1/2	2-3/8	3-3/8	4-1/2	7-1/2	2-3/8	3-3/8	4-1/2	7-1/2
	h,	(mm)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.35	0.26	0.21	0.12	n/a	n/a	n/a	n/a	0.23	0.07	0.05	0.03	0.35	0.14	0.09	0.05	n/a	n/a	n/a	n/a
Ê	1-7/8	(48)	0.58	0.58	0.57	0.54	0.36	0.27	0.22	0.13	0.57	0.53	0.52	0.52	0.25	0.08	0.05	0.03	0.36	0.16	0.10	0.06	n/a	n/a	n/a	n/a
E	2	(51)	0.58	0.58	0.57	0.54	0.37	0.28	0.23	0.13	0.57	0.53	0.52	0.52	0.28	0.09	0.06	0.03	0.37	0.17	0.11	0.06	n/a	n/a	n/a	n/a
. <u> </u>	3	(76)	0.62	0.62	0.61	0.57	0.48	0.34	0.27	0.16	0.61	0.55	0.54	0.52	0.51	0.16	0.10	0.06	0.48	0.32	0.21	0.11	n/a	n/a	n/a	n/a
- '(	3-5/8	(92)	0.65	0.65	0.63	0.58	0.56	0.38	0.30	0.17	0.63	0.56	0.54	0.53	0.68	0.21	0.14	0.07	0.56	0.38	0.27	0.15	0.72	n/a	n/a	n/a
s (F	4	(102)	0.66	0.66	0.65	0.59	0.62	0.41	0.31	0.18	0.64	0.57	0.55	0.53	0.79	0.24	0.16	0.09	0.62	0.41	0.31	0.17	0.75	n/a	n/a	n/a
ser	4-5/8	(117)	0.69	0.69	0.67	0.60	0.71	0.45	0.35	0.20	0.66	0.58	0.56	0.54	0.98	0.30	0.20	0.11	0.71	0.45	0.35	0.20	0.81	0.55	n/a	n/a
ş	5	(127)	0.70	0.70	0.69	0.61	0.77	0.48	0.36	0.21	0.68	0.58	0.56	0.54	1.00	0.34	0.22	0.12	0.77	0.48	0.36	0.21	0.84	0.57	n/a	n/a
thi	5-3/4	(146)	0.73	0.73	0.71	0.63	0.89	0.55	0.40	0.23	0.70	0.59	0.57	0.55		0.42	0.27	0.15	0.89	0.55	0.40	0.23	0.91	0.61	0.53	n/a
ete	6	(152)	0.74	0.74	0.72	0.63	0.92	0.58	0.42	0.24	0.71	0.60	0.57	0.55		0.45	0.29	0.16	0.92	0.58	0.42	0.24	0.92	0.63	0.54	n/a
JCr.	7	(178)	0.78	0.78	0.76	0.66	1.00	0.67	0.48	0.28	0.75	0.61	0.59	0.56		0.57	0.37	0.20	1.00	0.67	0.48	0.28	1.00	0.68	0.58	n/a
õ	8	(203)	0.82	0.82	0.80	0.68		0.77	0.55	0.32	0.79	0.63	0.60	0.57		0.69	0.45	0.24		0.77	0.55	0.32		0.72	0.63	n/a
(	8-3/4	(222)	0.86	0.86	0.82	0.69		0.84	0.61	0.35	0.81	0.64	0.61	0.57		0.79	0.51	0.28		0.84	0.61	0.35		0.76	0.65	0.53
<u> </u>	9	(229)	0.87	0.87	0.83	0.70		0.86	0.62	0.36	0.82	0.65	0.61	0.57		0.83	0.54	0.29		0.86	0.62	0.36		0.77	0.66	0.54
ЪС	10	(254)	0.91	0.91	0.87	0.72		0.96	0.69	0.40	0.86	0.66	0.62	0.58		0.97	0.63	0.34		0.96	0.69	0.40		0.81	0.70	0.57
staı	11	(279)	0.95	0.95	0.91	0.74		1.00	0.76	0.44	0.89	0.68	0.63	0.59		1.00	0.72	0.39		1.00	0.76	0.44		0.85	0.73	0.60
ä	12	(305)	0.99	0.99	0.94	0.77			0.83	0.48	0.93	0.70	0.65	0.60			0.83	0.45			0.83	0.48		0.88	0.77	0.63
ge	14	(356)	1.00	1.00	1.00	0.81			0.97	0.56	1.00	0.73	0.67	0.61			1.00	0.57			0.97	0.56		0.96	0.83	0.68
,ec	16	(406)				0.86			1.00	0.64		0.76	0.70	0.63				0.69			1.00	0.64		1.00	0.88	0.72
(s)	18	(457)				0.90				0.72		0.79	0.72	0.65				0.83				0.72			0.94	0.77
Ð	24	(610)				1.00				0.96		0.89	0.79	0.70				1.00				0.96			1.00	0.88
acii	30	(762)								1.00		0.99	0.87	0.74								1.00				0.99
Sp	36	(914)										1.00	0.94	0.79												1.00
-	> 48	(1219)											1.00	0.89												

#### Table 31 - Load adjustment factors for 3/8-in. diameter threaded rods in cracked concrete^{1,2,3}

																	Edge	distar	nce in	shear						
	3/8-ir	ı.	s	pacin	g facto	or	Edg	e dista	ince fa	ctor	s	pacin	g facto	or			L			To an	d awa	v	Cor	ncrete	thickn	ess
	cracke	ed	-	in ter	nsion			in ter	nsion		-	in sh	near ⁴		-	Toward	_ d edge			from	edge	, ,	fa	actor in	n shea	r ⁵
	concre	te		f	ΔΝ			f	DN			f	۵\/			f	DV U			f	DV U			f	HV	
Emb	edment	in.	2-3/8	3-3/8	4-1/2	7-1/2	2-3/8	3-3/8	4-1/2	7-1/2	2-3/8	3-3/8	4-1/2	7-1/2	2-3/8	3-3/8	4-1/2	7-1/2	2-3/8	3-3/8	4-1/2	7-1/2	2-3/8	3-3/8	4-1/2	7-1/2
	h.,	(mm)	(60)	(86)	(114)	, (191)	(60)	(86)	(114)	, (191)	(60)	(86)	(114)	, (191)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	, (191)	(60)	(86)	(114)	(191)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.50	0.50	0.49	0.43	n/a	n/a	n/a	n/a	0.23	0.07	0.06	0.03	0.46	0.15	0.11	0.07	n/a	n/a	n/a	n/a
Ê	1-7/8	(48)	0.58	0.58	0.57	0.54	0.52	0.52	0.50	0.44	0.57	0.53	0.53	0.52	0.26	0.08	0.06	0.04	0.51	0.16	0.12	0.07	n/a	n/a	n/a	n/a
E	2	(51)	0.58	0.58	0.57	0.54	0.53	0.53	0.51	0.44	0.57	0.53	0.53	0.52	0.28	0.09	0.07	0.04	0.53	0.18	0.14	0.08	n/a	n/a	n/a	n/a
Ŀ.	3	(76)	0.62	0.62	0.61	0.57	0.63	0.63	0.60	0.49	0.61	0.55	0.54	0.53	0.52	0.17	0.12	0.07	0.63	0.33	0.25	0.15	n/a	n/a	n/a	n/a
- (	3-5/8	(92)	0.65	0.65	0.63	0.58	0.70	0.70	0.66	0.53	0.63	0.56	0.55	0.54	0.69	0.22	0.17	0.10	0.70	0.44	0.33	0.20	0.72	n/a	n/a	n/a
s (h	4	(102)	0.66	0.66	0.65	0.59	0.74	0.74	0.70	0.55	0.64	0.57	0.56	0.54	0.80	0.26	0.19	0.11	0.74	0.51	0.38	0.23	0.76	n/a	n/a	n/a
es:	4-5/8	(117)	0.69	0.69	0.67	0.60	0.81	0.81	0.76	0.58	0.67	0.58	0.56	0.55	0.99	0.32	0.24	0.14	0.81	0.63	0.48	0.29	0.81	0.56	n/a	n/a
-kn	5	(127)	0.70	0.70	0.69	0.61	0.86	0.86	0.80	0.60	0.68	0.58	0.57	0.55	1.00	0.36	0.27	0.16	0.86	0.71	0.54	0.32	0.85	0.58	n/a	n/a
thic	5-3/4	(146)	0.73	0.73	0.71	0.63	0.95	0.95	0.88	0.64	0.71	0.60	0.58	0.56		0.44	0.33	0.20	0.95	0.88	0.66	0.40	0.91	0.62	0.56	n/a
ete	6	(152)	0.74	0.74	0.72	0.63	0.98	0.98	0.91	0.66	0.71	0.60	0.58	0.56		0.47	0.35	0.21	0.98	0.94	0.70	0.42	0.93	0.63	0.58	n/a
JCre	7	(178)	0.78	0.78	0.76	0.66	1.00	1.00	1.00	0.72	0.75	0.62	0.60	0.57		0.59	0.44	0.27	1.00	1.00	0.89	0.53	1.00	0.69	0.62	n/a
õ	8	(203)	0.82	0.82	0.80	0.68				0.78	0.79	0.63	0.61	0.58		0.72	0.54	0.32			1.00	0.65		0.73	0.67	n/a
/(*	8-3/4	(222)	0.86	0.86	0.82	0.69				0.83	0.81	0.65	0.62	0.59		0.83	0.62	0.37				0.74		0.77	0.70	0.59
<u> </u>	9	(229)	0.87	0.87	0.83	0.70				0.85	0.82	0.65	0.62	0.59		0.86	0.65	0.39				0.78		0.78	0.71	0.60
JCe	10	(254)	0.91	0.91	0.87	0.72				0.91	0.86	0.67	0.64	0.60		1.00	0.76	0.45				0.91		0.82	0.74	0.63
staı	11	(279)	0.95	0.95	0.91	0.74				0.98	0.89	0.68	0.65	0.61			0.87	0.52				0.98		0.86	0.78	0.66
di	12	(305)	0.99	0.99	0.94	0.77				1.00	0.93	0.70	0.67	0.62			1.00	0.60				1.00		0.90	0.82	0.69
dge	14	(356)	1.00	1.00	1.00	0.81					1.00	0.73	0.69	0.64				0.75						0.97	0.88	0.74
/ ec	16	(406)				0.86						0.77	0.72	0.66				0.92						1.00	0.94	0.79
(s)	18	(457)				0.90						0.80	0.75	0.68				1.00							1.00	0.84
þ	24	(610)				1.00						0.90	0.83	0.74												0.97
acii	30	(762)										1.00	0.92	0.80											i T	1.00
Sp	36	(914)											1.00	0.85												
-	> 48	(1219)												0.97												

1 Linear interpolation not permitted

2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to 0.30 T_{max} for 5d  $\leq$  s  $\leq$  16-in. and to 0.5 T_{max} for s > 16-in.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative.

To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{ef}$ .  $f_{AV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{AV} = f_{AN}$ .

5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{er}$ . If  $c \ge 3^*h_{er}$ , then  $f_{HV} = 1.0$ .

																Edge	distar	nce in s	shear							
	1/2-in		s	pacing	g facto	or	Edg	e dista	ince fa	ictor	s	pacin	g facto	or						To an	d awa	y	Cor	ncrete	thickn	ess
U	, Incrack	ed		in ter	nsion		0	in ter	nsion			in sh	near ⁴		-	Toward	d edge	•		from	edge		fa	actor ir	n shear	r ⁵
	concre	te		f	AN			$f_{1}$	RN			f	AV			f	RV			$f_{\rm F}$	RV			f	HV	
Emb	edment	in.	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10
	h _{ef}	(mm)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)
ê	1-3/4	(44)	n/a	n/a	n/a	n/a	0.34	0.24	0.19	0.11	n/a	n/a	n/a	n/a	0.10	0.05	0.03	0.02	0.21	0.11	0.07	0.03	n/a	n/a	n/a	n/a
h	2-1/2	(64)	0.58	0.58	0.57	0.54	0.41	0.28	0.22	0.13	0.55	0.53	0.53	0.52	0.18	0.09	0.06	0.03	0.35	0.18	0.12	0.06	n/a	n/a	n/a	n/a
n. (	3	(76)	0.59	0.59	0.58	0.55	0.46	0.30	0.23	0.14	0.56	0.54	0.53	0.52	0.23	0.12	0.08	0.04	0.46	0.24	0.15	0.08	n/a	n/a	n/a	n/a
	4	(102)	0.62	0.62	0.61	0.57	0.57	0.35	0.26	0.15	0.58	0.55	0.54	0.53	0.36	0.18	0.12	0.06	0.57	0.35	0.24	0.12	0.58	n/a	n/a	n/a
(h),	5	(127)	0.65	0.65	0.64	0.58	0.71	0.40	0.30	0.17	0.60	0.57	0.55	0.53	0.50	0.26	0.17	0.08	0.71	0.40	0.31	0.16	0.65	n/a	n/a	n/a
SSS	5-3/4	(146)	0.68	0.68	0.66	0.60	0.78	0.44	0.33	0.19	0.62	0.58	0.56	0.54	0.61	0.32	0.21	0.10	0.81	0.44	0.34	0.20	0.69	0.56	n/a	n/a
kne	6	(152)	0.69	0.69	0.67	0.60	0.80	0.46	0.33	0.20	0.63	0.58	0.56	0.54	0.65	0.34	0.22	0.11	0.85	0.46	0.35	0.21	0.71	0.57	n/a	n/a
hic	7	(178)	0.72	0.72	0.69	0.62	0.90	0.52	0.37	0.22	0.65	0.59	0.57	0.54	0.82	0.42	0.28	0.13	0.99	0.52	0.38	0.27	0.77	0.61	n/a	n/a
te t	7-1/4	(184)	0.72	0.72	0.70	0.62	0.92	0.54	0.38	0.22	0.65	0.60	0.57	0.55	0.87	0.45	0.29	0.14	1.00	0.54	0.39	0.28	0.78	0.62	0.54	n/a
cret	8	(203)	0.75	0.75	0.72	0.63	0.99	0.59	0.41	0.24	0.67	0.61	0.58	0.55	1.00	0.52	0.34	0.16		0.59	0.42	0.30	0.82	0.66	0.57	n/a
ouc	9	(229)	0.78	0.78	0.75	0.65	1.00	0.67	0.46	0.27	0.69	0.62	0.59	0.56		0.62	0.40	0.20		0.67	0.46	0.32	0.87	0.70	0.60	n/a
~	10	(254)	0.81	0.81	0.78	0.67		0.74	0.52	0.30	0.71	0.63	0.60	0.56		0.72	0.47	0.23		0.74	0.52	0.34	0.92	0.73	0.64	n/a
(ca)	11-1/4	(286)	0.85	0.85	0.81	0.69		0.83	0.58	0.34	0.74	0.65	0.61	0.57		0.86	0.56	0.27		0.83	0.58	0.37	0.97	0.78	0.67	0.53
e	12	(305)	0.87	0.87	0.83	0.70		0.89	0.62	0.36	0.75	0.66	0.62	0.58		0.95	0.62	0.30		0.89	0.62	0.38	1.00	0.80	0.70	0.55
tan	14	(356)	0.93	0.93	0.89	0.73		1.00	0.72	0.42	0.79	0.69	0.64	0.59		1.00	0.78	0.38		1.00	0.72	0.43		0.87	0.75	0.59
dist	16	(406)	1.00	1.00	0.94	0.77			0.82	0.48	0.83	0.72	0.66	0.60			0.95	0.47			0.82	0.48		0.93	0.80	0.63
ge	18	(457)			1.00	0.80			0.93	0.54	0.88	0.74	0.68	0.61			1.00	0.56			0.93	0.54		0.98	0.85	0.67
edi	20	(508)				0.83			1.00	0.60	0.92	0.77	0.70	0.63				0.65			1.00	0.60		1.00	0.90	0.71
/ (s	22	(559)				0.87				0.66	0.96	0.80	0.72	0.64				0.75				0.66			0.94	0.74
g (s	24	(610)				0.90				0.72	1.00	0.82	0.74	0.65				0.85				0.72			0.98	0.77
ci	30	(762)				1.00				0.90		0.90	0.80	0.69				1.00				0.90			1.00	0.87
spa	36	(914)								1.00		0.98	0.86	0.73								1.00				0.95
0	> 48	(1219)										1.00	0.98	0.80												1.00

#### Table 32 - Load adjustment factors for 1/2-in. diameter threaded rods in uncracked concrete^{1,2,3}

Table 33 - Load adjustment factors for 1	/2-in. diameter threaded rods in cracked concrete ^{1,2}
------------------------------------------	------------------------------------------------------------------

																	Edge	distar	nce in :	shear						
	1/2-ir	۱.	l s	pacino	g facto	or	Edg	e dista	ance fa	actor	s	pacino	g facto	or			L			To an	d awa	v	Cor	ncrete	thickn	ess
	cracke	ed		in ter	nsion		. 3	in ter	nsion	-		in sh	near ⁴		-	Toward	d edge	•		from	edge	,	fa	actor in	h shear	r ⁵
	concre	te		f	ΔΝ			f	DN			f	۵\/			f	DV U			$f_{a}$	21/			f	HV	
Fmb	edment	in.	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10
Lino	h.	(mm)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)
-	et 1-3/4	(44)	n/a	n/a	n/a	n/a	0.47	0.47	0.45	0.41	n/a	n/a	n/a	n/a	0.10	0.05	0.04	0.02	0.21	0 11	0.07	0.04	(. c) n/a	n/a	n/a	n/a
E	2-1/2	(64)	0.58	0.58	0.57	0.54	0.52	0.52	0.50	0.44	0.55	0.53	0.53	0.52	0.18	0.00	0.06	0.02	0.35	0.18	0.07	0.07	n/a	n/a	n/a	n/a
<u>د</u>	3	(76)	0.59	0.59	0.58	0.55	0.56	0.56	0.53	0.46	0.56	0.54	0.53	0.52	0.23	0.12	0.08	0.05	0.47	0.24	0.16	0.10	n/a	n/a	n/a	 
-2.	4	(102)	0.62	0.62	0.61	0.57	0.63	0.63	0.60	0.49	0.58	0.55	0.54	0.53	0.36	0.18	0.13	0.08	0.72	0.37	0.25	0.15	0.58	n/a	n/a	n/a
Ê,	5	(127)	0.65	0.65	0.64	0.58	0.72	0.72	0.67	0.53	0.61	0.57	0.55	0.54	0.50	0.26	0.18	0.11	1.00	0.52	0.35	0.21	0.65	n/a	n/a	n/a
ss (	5-3/4	(146)	0.68	0.68	0.66	0.60	0.78	0.78	0.73	0.56	0.62	0.58	0.56	0.54	0.62	0.32	0.22	0.13		0.64	0.43	0.26	0.70	0.56	n/a	n/a
ü	6	(152)	0.69	0.69	0.67	0.60	0.80	0.80	0.75	0.57	0.63	0.58	0.56	0.54	0.66	0.34	0.23	0.14		0.68	0.46	0.28	0.71	0.57	n/a	n/a
ick	7	(178)	0.72	0.72	0.69	0.62	0.90	0.90	0.83	0.62	0.65	0.59	0.57	0.55	0.83	0.43	0.29	0.17		0.86	0.58	0.35	0.77	0.62	n/a	n/a
e t	7-1/4	(184)	0.72	0.72	0.70	0.62	0.92	0.92	0.85	0.63	0.65	0.60	0.58	0.55	0.88	0.45	0.31	0.18		0.90	0.61	0.37	0.78	0.63	0.55	n/a
rete	8	(203)	0.75	0.75	0.72	0.63	0.99	0.99	0.91	0.66	0.67	0.61	0.58	0.56	1.00	0.52	0.35	0.21		1.00	0.71	0.43	0.82	0.66	0.58	n/a
nc	9	(229)	0.78	0.78	0.75	0.65	1.00	1.00	1.00	0.70	0.69	0.62	0.59	0.57		0.62	0.42	0.25			0.85	0.51	0.87	0.70	0.61	n/a
ŏ V	10	(254)	0.81	0.81	0.78	0.67				0.75	0.71	0.64	0.60	0.57		0.73	0.50	0.30			0.99	0.59	0.92	0.74	0.65	n/a
с ^а )	11-1/4	(286)	0.85	0.85	0.81	0.69				0.81	0.74	0.65	0.62	0.58		0.87	0.59	0.35			1.00	0.71	0.97	0.78	0.69	0.58
e e	12	(305)	0.87	0.87	0.83	0.70				0.85	0.75	0.66	0.63	0.59		0.96	0.65	0.39				0.78	1.00	0.81	0.71	0.60
anc	14	(356)	0.93	0.93	0.89	0.73				0.95	0.79	0.69	0.65	0.60		1.00	0.82	0.49				0.95		0.87	0.76	0.64
list	16	(406)	1.00	1.00	0.94	0.77				1.00	0.84	0.72	0.67	0.62			1.00	0.60				1.00		0.93	0.82	0.69
e	18	(457)			1.00	0.80					0.88	0.74	0.69	0.63				0.72						0.99	0.87	0.73
gg	20	(508)				0.83					0.92	0.77	0.71	0.65				0.84						1.00	0.91	0.77
) •	22	(559)				0.87					0.96	0.80	0.73	0.66				0.97							0.96	0.81
(s)	24	(610)				0.90					1.00	0.82	0.75	0.68				1.00							1.00	0.84
ing	30	(762)				1.00						0.91	0.81	0.72												0.94
oac	36	(914)										0.99	0.88	0.77												1.00
ŝ	> 48	(1219)										1.00	1.00	0.86												

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to 0.30 T_{max} for 5d  $\leq$  s  $\leq$  16-in. and to 0.5 T_{max} for s > 16-in.

3 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with a thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using the design equations from ACI 318 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^{*}h_{ef'}$  is applicable when edge distance,  $c < 3^{*}h_{ef'}$ . If  $c \ge 3^{*}h_{ef'}$  then  $f_{AV} = f_{AN}$ .

5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^{*}h_{ef}$ . If  $c \ge 3^{*}h_{ef}$ , then  $f_{HV} = 1.0$ .



#### Table 34 - Load adjustment factors for 5/8-in. diameter threaded rods in uncracked concrete^{1,2,3}

																	Edge	distar	nce in :	shear						
	5/8-ir	ı.	s	pacin	g facto	or	Edg	e dista	ince fa	actor	s	spacing	g facto	or			L			To an	d awa	y	Cor	ncrete	thickn	iess
ι	Incrack	ked		in ter	nsion			in ter	nsion			in sh	near4		-	Toward	d edge	•		from	edge		fa	actor ir	n shea	.r⁵
	concre	te		f	AN			f	RN			f	AV			f	RV			$f_{i}$	RV			f	HV	
Emb	edment	in.	3-1/8	5-5/8	7-1/2	12-1/2	3-1/8	5-5/8	7-1/2	12-1/2	3-1/8	5-5/8	7-1/2	12-1/2	3-1/8	5-5/8	7-1/2	12-1/2	3-1/8	5-5/8	7-1/2	12-1/2	3-1/8	5-5/8	7-1/2	12-1/2
	h _{ef}	(mm)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.35	0.24	0.19	0.11	n/a	n/a	n/a	n/a	0.09	0.04	0.03	0.01	0.19	0.08	0.06	0.03	n/a	n/a	n/a	n/a
Ê	3-1/8	(79)	0.58	0.58	0.57	0.54	0.47	0.29	0.22	0.13	0.56	0.54	0.53	0.52	0.22	0.10	0.07	0.03	0.45	0.20	0.13	0.06	n/a	n/a	n/a	n/a
E	4	(102)	0.60	0.60	0.59	0.55	0.56	0.32	0.24	0.14	0.58	0.55	0.53	0.52	0.32	0.15	0.10	0.04	0.56	0.29	0.19	0.09	n/a	n/a	n/a	n/a
. <u>Ľ</u>	4-5/8	(117)	0.62	0.62	0.60	0.56	0.62	0.35	0.26	0.15	0.59	0.55	0.54	0.52	0.40	0.18	0.12	0.06	0.62	0.35	0.24	0.11	0.60	n/a	n/a	n/a
- (	5	(127)	0.63	0.63	0.61	0.57	0.64	0.36	0.27	0.16	0.60	0.56	0.54	0.53	0.45	0.21	0.13	0.06	0.67	0.36	0.27	0.12	0.63	n/a	n/a	n/a
s (F	6	(152)	0.65	0.65	0.63	0.58	0.71	0.41	0.30	0.17	0.62	0.57	0.55	0.53	0.59	0.27	0.18	0.08	0.80	0.41	0.32	0.16	0.69	n/a	n/a	n/a
Jes	7	(178)	0.68	0.68	0.66	0.59	0.78	0.45	0.33	0.19	0.64	0.58	0.56	0.54	0.75	0.34	0.22	0.10	0.94	0.45	0.35	0.21	0.74	n/a	n/a	n/a
Ŗ	7-1/8	(181)	0.68	0.68	0.66	0.60	0.79	0.46	0.33	0.19	0.64	0.58	0.56	0.54	0.77	0.35	0.23	0.11	0.95	0.46	0.35	0.21	0.75	0.57	n/a	n/a
thi	8	(203)	0.70	0.70	0.68	0.61	0.85	0.50	0.36	0.21	0.66	0.59	0.57	0.54	0.91	0.41	0.27	0.13	1.00	0.50	0.38	0.25	0.79	0.61	n/a	n/a
ete	9	(229)	0.73	0.73	0.70	0.62	0.93	0.56	0.39	0.22	0.68	0.60	0.58	0.55	1.00	0.50	0.32	0.15		0.56	0.41	0.29	0.84	0.65	0.56	n/a
JC	10	(254)	0.75	0.75	0.72	0.63	1.00	0.62	0.43	0.24	0.70	0.62	0.59	0.55		0.58	0.38	0.18		0.62	0.44	0.30	0.89	0.68	0.59	n/a
õ	11	(279)	0.78	0.78	0.74	0.65		0.68	0.47	0.27	0.72	0.63	0.60	0.56		0.67	0.43	0.20		0.68	0.47	0.32	0.93	0.71	0.62	n/a
(°	12	(305)	0.80	0.80	0.77	0.66		0.74	0.51	0.29	0.74	0.64	0.60	0.56		0.76	0.50	0.23		0.74	0.51	0.34	0.97	0.75	0.65	n/a
0	14	(356)	0.85	0.85	0.81	0.69		0.86	0.60	0.34	0.77	0.66	0.62	0.57		0.96	0.62	0.29		0.86	0.60	0.37	1.00	0.81	0.70	0.54
ő	16	(406)	0.90	0.90	0.86	0.71		0.99	0.68	0.39	0.81	0.69	0.64	0.58		1.00	0.76	0.35		0.99	0.68	0.41		0.86	0.75	0.58
sta	18	(457)	0.96	0.96	0.90	0.74		1.00	0.77	0.44	0.85	0.71	0.66	0.59			0.91	0.42		1.00	0.77	0.44		0.91	0.79	0.61
ö	20	(508)	1.00	1.00	0.94	0.77			0.86	0.49	0.89	0.73	0.67	0.60			1.00	0.50			0.86	0.49		0.96	0.83	0.65
ge	22	(559)			0.99	0.79			0.94	0.54	0.93	0.75	0.69	0.61				0.57			0.94	0.54		1.00	0.87	0.68
/ec	24	(610)			1.00	0.82			1.00	0.59	0.97	0.78	0.71	0.63				0.65			1.00	0.59			0.91	0.71
ŝ	26	(660)				0.85				0.64	1.00	0.80	0.73	0.64				0.73				0.64			0.95	0.74
g	28	(711)				0.87				0.68		0.82	0.74	0.65				0.82				0.68			0.99	0.76
aci	30	(762)				0.90				0.73		0.85	0.76	0.66				0.91				0.73			1.00	0.79
Sp	36	(914)				0.98				0.88		0.92	0.81	0.69				1.00				0.88				0.87
	> 48	(1219)				1.00				1.00		1.00	0.92	0.75								1.00				1.00

#### Table 35 - Load adjustment factors for 5/8-in. diameter threaded rods in cracked concrete^{1,2,3}

																	Edge	distar	nce in	shear						
	5/8-ir	ı.	s	pacing	g facto	or	Edg	e dista	ince fa	actor	s	pacing	g facto	or			L			To an	d awa	у	Cor	ncrete	thickn	ess
	cracke	ed		in ter	nsion			in ter	nsion			in sh	ear⁴		-	Toward	d edge	,		from	edge	-	fa	actor ir	n shear	r ⁵
	concre	te		f	AN			f	RN			f	٩V			f	RV			f	RV			f	HV	
Emb	edment	in.	3-1/8	5-5/8	7-1/2	12-1/2	3-1/8	5-5/8	7-1/2	12-1/2	3-1/8	5-5/8	7-1/2	12-1/2	3-1/8	5-5/8	7-1/2	12-1/2	3-1/8	5-5/8	7-1/2	12-1/2	3-1/8	5-5/8	7-1/2	12-1/2
	h _{af}	(mm)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	, (191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	, (143)	(191)	(318)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.44	0.44	0.43	0.40	n/a	n/a	n/a	n/a	0.09	0.04	0.03	0.02	0.19	0.09	0.06	0.03	n/a	n/a	n/a	n/a
Ê	3-1/8	(79)	0.58	0.58	0.57	0.54	0.52	0.52	0.50	0.44	0.56	0.54	0.53	0.52	0.22	0.10	0.07	0.04	0.45	0.20	0.13	0.07	n/a	n/a	n/a	n/a
E	4	(102)	0.60	0.60	0.59	0.55	0.58	0.58	0.55	0.46	0.58	0.55	0.53	0.52	0.33	0.15	0.10	0.05	0.65	0.30	0.19	0.11	n/a	n/a	n/a	n/a
Ľ.	4-5/8	(117)	0.62	0.62	0.60	0.56	0.62	0.62	0.58	0.48	0.59	0.55	0.54	0.53	0.40	0.18	0.12	0.07	0.81	0.37	0.24	0.13	0.60	n/a	n/a	n/a
÷-	5	(127)	0.63	0.63	0.61	0.57	0.64	0.64	0.60	0.49	0.60	0.56	0.54	0.53	0.45	0.21	0.13	0.08	0.91	0.41	0.27	0.15	0.63	n/a	n/a	n/a
د د	6	(152)	0.65	0.65	0.63	0.58	0.71	0.71	0.66	0.53	0.62	0.57	0.55	0.54	0.60	0.27	0.18	0.10	1.00	0.54	0.35	0.20	0.69	n/a	n/a	n/a
ies	7	(178)	0.68	0.68	0.66	0.59	0.78	0.78	0.72	0.56	0.64	0.58	0.56	0.54	0.75	0.34	0.22	0.13		0.68	0.44	0.25	0.74	n/a	n/a	n/a
Ŗ	7-1/8	(181)	0.68	0.68	0.66	0.60	0.79	0.79	0.73	0.56	0.64	0.58	0.56	0.54	0.77	0.35	0.23	0.13		0.70	0.46	0.26	0.75	0.58	n/a	n/a
ţ	8	(203)	0.70	0.70	0.68	0.61	0.85	0.85	0.78	0.59	0.66	0.59	0.57	0.55	0.92	0.42	0.27	0.15		0.84	0.54	0.31	0.79	0.61	n/a	n/a
ete	9	(229)	0.73	0.73	0.70	0.62	0.93	0.93	0.85	0.62	0.68	0.60	0.58	0.55	1.00	0.50	0.32	0.18		1.00	0.65	0.37	0.84	0.65	0.56	n/a
2 C	10	(254)	0.75	0.75	0.72	0.63	1.00	1.00	0.91	0.66	0.70	0.62	0.59	0.56		0.58	0.38	0.21			0.76	0.43	0.89	0.68	0.59	n/a
ō	11	(279)	0.78	0.78	0.74	0.65			0.98	0.69	0.72	0.63	0.60	0.57		0.67	0.44	0.25			0.88	0.49	0.93	0.72	0.62	n/a
(°	12	(305)	0.80	0.80	0.77	0.66			1.00	0.73	0.74	0.64	0.60	0.57		0.77	0.50	0.28			1.00	0.56	0.97	0.75	0.65	n/a
<u> </u>	14	(356)	0.85	0.85	0.81	0.69				0.81	0.78	0.66	0.62	0.58		0.97	0.63	0.36				0.71	1.00	0.81	0.70	0.58
ъ	16	(406)	0.90	0.90	0.86	0.71				0.89	0.82	0.69	0.64	0.60		1.00	0.77	0.43				0.87		0.86	0.75	0.62
sta	18	(457)	0.96	0.96	0.90	0.74				0.97	0.85	0.71	0.66	0.61			0.92	0.52				0.97		0.92	0.79	0.66
ġ	20	(508)	1.00	1.00	0.94	0.77				1.00	0.89	0.73	0.67	0.62			1.00	0.61				1.00		0.97	0.84	0.69
gg	22	(559)			0.99	0.79					0.93	0.76	0.69	0.63				0.70						1.00	0.88	0.72
/ec	24	(610)			1.00	0.82					0.97	0.78	0.71	0.64				0.80							0.92	0.76
(s)	26	(660)				0.85					1.00	0.80	0.73	0.66				0.90							0.95	0.79
g	28	(711)				0.87						0.83	0.74	0.67				1.00							0.99	0.82
aci	30	(762)				0.90						0.85	0.76	0.68											1.00	0.85
Sp	36	(914)				0.98						0.92	0.81	0.71												0.93
	> 48	(1219)				1.00						1.00	0.92	0.79											Ĺ	1.00

1 Linear interpolation not permitted

2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to  $0.30 T_{max}$  for  $5d \le s \le 16$ -in. and to  $0.5 T_{max}$  for s > 16-in.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{ef}$ .  $f_{AV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{AV} = f_{AN}$ .

5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^{*}h_{ef}$ . If  $c \ge 3^{*}h_{ef}$ , then  $f_{HV} = 1.0$ .

																	Edge	distar	nce in :	shear						
	3/4-ir	ı.	s	bacino	a facto	or	Eda	e dista	ince fa	ictor	s	pacin	a facto	or						To an	d awa	v	Cor	ncrete	thickn	ess
ι	uncracl	ked		in ter	nsion		- 5	in ter	nsion		-	in sh	near ⁴		-	Toward	_ d edge	,		from	edge	, ,	fa	actor in	n shea	r ⁵
	concre	ete		f	1 NI			f				f	۵\/			f	əv			$f_{i}$	21/			f	нν	
Emb	edment	in.	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15
	h,	(mm)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.35	0.24	0.18	0.10	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.17	0.07	0.05	0.02	n/a	n/a	n/a	n/a
_	3-3/4	(95)	0.58	0.58	0.57	0.54	0.52	0.30	0.23	0.13	0.57	0.54	0.53	0.52	0.27	0.11	0.07	0.03	0.52	0.22	0.14	0.07	n/a	n/a	n/a	n/a
E	4	(102)	0.59	0.59	0.57	0.54	0.54	0.31	0.23	0.13	0.57	0.54	0.53	0.52	0.29	0.12	0.08	0.04	0.54	0.24	0.16	0.07	n/a	n/a	n/a	n/a
÷	5	(127)	0.61	0.61	0.59	0.56	0.59	0.34	0.25	0.14	0.59	0.55	0.54	0.52	0.41	0.17	0.11	0.05	0.64	0.33	0.22	0.10	n/a	n/a	n/a	n/a
-	5-1/4	(133)	0.61	0.61	0.60	0.56	0.61	0.35	0.26	0.15	0.60	0.55	0.54	0.52	0.44	0.18	0.12	0.05	0.66	0.35	0.23	0.11	0.62	n/a	n/a	n/a
Ê,	6	(152)	0.63	0.63	0.61	0.57	0.65	0.38	0.28	0.16	0.61	0.56	0.55	0.53	0.54	0.22	0.14	0.07	0.76	0.38	0.29	0.13	0.66	n/a	n/a	n/a
SS	7	(178)	0.65	0.65	0.63	0.58	0.70	0.41	0.30	0.17	0.63	0.57	0.55	0.53	0.68	0.28	0.18	0.08	0.89	0.41	0.32	0.17	0.72	n/a	n/a	n/a
Ê.	8	(203)	0.67	0.67	0.65	0.59	0.76	0.45	0.33	0.18	0.65	0.58	0.56	0.54	0.83	0.34	0.22	0.10	1.00	0.45	0.35	0.20	0.77	n/a	n/a	n/a
<u>ic</u>	8-1/2	(216)	0.68	0.68	0.66	0.59	0.79	0.47	0.34	0.19	0.66	0.59	0.56	0.54	0.91	0.37	0.24	0.11		0.47	0.36	0.22	0.79	0.59	n/a	n/a
ett	9	(229)	0.69	0.69	0.67	0.60	0.83	0.49	0.35	0.20	0.67	0.59	0.57	0.54	0.99	0.40	0.26	0.12		0.49	0.37	0.24	0.81	0.60	n/a	n/a
itet	10	(254)	0.71	0.71	0.69	0.61	0.89	0.53	0.38	0.21	0.68	0.60	0.58	0.55	1.00	0.47	0.31	0.14		0.53	0.40	0.28	0.86	0.64	n/a	n/a
5	10-3/4	(273)	0.73	0.73	0.70	0.62	0.94	0.57	0.40	0.23	0.70	0.61	0.58	0.55		0.53	0.34	0.16		0.57	0.42	0.29	0.89	0.66	0.57	n/a
<u> </u>	12	(305)	0.76	0.76	0.72	0.63	1.00	0.64	0.44	0.25	0.72	0.62	0.59	0.55		0.62	0.40	0.19		0.64	0.45	0.31	0.94	0.70	0.60	n/a
ca)	14	(356)	0.80	0.80	0.76	0.66		0.74	0.52	0.29	0.76	0.64	0.61	0.56		0.78	0.51	0.24		0.74	0.52	0.33	1.00	0.75	0.65	n/a
e	16	(406)	0.84	0.84	0.80	0.68		0.85	0.59	0.33	0.79	0.66	0.62	0.57		0.96	0.62	0.29		0.85	0.59	0.36		0.80	0.70	n/a
an	16-3/4	(425)	0.86	0.86	0.81	0.69		0.89	0.62	0.35	0.81	0.67	0.63	0.58		1.00	0.67	0.31		0.89	0.62	0.37		0.82	0.71	0.55
dist	18	(457)	0.89	0.89	0.83	0.70		0.96	0.66	0.37	0.83	0.68	0.64	0.58			0.74	0.35		0.96	0.66	0.39		0.85	0.74	0.57
ě	20	(508)	0.93	0.93	0.87	0.72		1.00	0.74	0.41	0.87	0.70	0.65	0.59			0.87	0.40		1.00	0.74	0.42		0.90	0.78	0.60
éģ	22	(559)	0.97	0.97	0.91	0.74			0.81	0.45	0.91	0.72	0.67	0.60			1.00	0.47			0.81	0.46		0.94	0.82	0.63
)	24	(610)	1.00	1.00	0.94	0.77			0.89	0.50	0.94	0.74	0.68	0.61				0.53			0.89	0.50		0.99	0.85	0.66
s) b	26	(660)			0.98	0.79			0.96	0.54	0.98	0.76	0.70	0.62				0.60			0.96	0.54		1.00	0.89	0.69
ü	28	(711)			1.00	0.81			1.00	0.58	1.00	0.78	0.71	0.63				0.67			1.00	0.58			0.92	0.71
pa	30	(762)				0.83				0.62		0.80	0.73	0.64				0.74				0.62			0.95	0.74
S	36	(914)				0.90				0.74		0.86	0.77	0.66				0.98				0.74			1.00	0.81
	> 48	(1219)				1.00				0.99		0.99	0.86	0.72				1.00				0.99				0.94

#### Table 36 - Load adjustment factors for 3/4-in. diameter threaded rods in uncracked concrete^{1,2,3}

Table 37 - Load adjustment factors for 3/4-in. diameter inreaded rods in cracked concrete	Table 37	- Load adjustment fac	tors for 3/4-in. d	liameter threaded ı	rods in cracked concrete
-------------------------------------------------------------------------------------------	----------	-----------------------	--------------------	---------------------	--------------------------

																	Edge	distar	nce in s	shear						
	3/4-ir	ı.	s	pacing	g facto	or	Edg	e dista	ince fa	ictor	s	pacin	g facto	or		_				To an	d awa	y	Cor	ncrete	thickn	ess
	cracke	ed		in ter	nsion		-	in ter	nsion			in sh	near4		-	Toward	d edge			from	edge	-	fa	actor ir	n shear	r ⁵
	concre	te		f	AN			$f_{\rm F}$	RN			f	AV			f	RV			$f_{\rm f}$	RV			f	HV	
Emb	edment	in.	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15
	h _{ef}	(mm)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.43	0.43	0.42	0.39	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.17	0.07	0.05	0.02	n/a	n/a	n/a	n/a
ĉ	3-3/4	(95)	0.58	0.58	0.57	0.54	0.53	0.53	0.50	0.44	0.57	0.54	0.53	0.52	0.27	0.11	0.07	0.04	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a
Ē	4	(102)	0.59	0.59	0.57	0.54	0.54	0.54	0.51	0.44	0.57	0.54	0.53	0.52	0.30	0.12	0.08	0.04	0.59	0.24	0.16	0.08	n/a	n/a	n/a	n/a
	5	(127)	0.61	0.61	0.59	0.56	0.59	0.59	0.56	0.47	0.59	0.55	0.54	0.52	0.41	0.17	0.11	0.06	0.83	0.34	0.22	0.11	n/a	n/a	n/a	n/a
	5-1/4	(133)	0.61	0.61	0.60	0.56	0.61	0.61	0.57	0.47	0.60	0.55	0.54	0.53	0.45	0.18	0.12	0.06	0.89	0.36	0.24	0.12	0.62	n/a	n/a	n/a
Ê	6	(152)	0.63	0.63	0.61	0.57	0.65	0.65	0.60	0.49	0.61	0.56	0.55	0.53	0.54	0.22	0.14	0.07	1.00	0.44	0.29	0.15	0.67	n/a	n/a	n/a
SSS	7	(178)	0.65	0.65	0.63	0.58	0.70	0.70	0.65	0.52	0.63	0.57	0.55	0.53	0.69	0.28	0.18	0.09		0.56	0.36	0.19	0.72	n/a	n/a	n/a
kn	8	(203)	0.67	0.67	0.65	0.59	0.76	0.76	0.70	0.55	0.65	0.58	0.56	0.54	0.84	0.34	0.22	0.12		0.68	0.44	0.23	0.77	n/a	n/a	n/a
hic	8-1/2	(216)	0.68	0.68	0.66	0.59	0.79	0.79	0.72	0.56	0.66	0.59	0.56	0.54	0.92	0.37	0.24	0.13		0.75	0.49	0.25	0.79	0.59	n/a	n/a
te t	9	(229)	0.69	0.69	0.67	0.60	0.83	0.83	0.75	0.57	0.67	0.59	0.57	0.54	1.00	0.41	0.26	0.14		0.82	0.53	0.28	0.82	0.61	n/a	n/a
cre	10	(254)	0.71	0.71	0.69	0.61	0.89	0.89	0.80	0.60	0.69	0.60	0.58	0.55		0.48	0.31	0.16		0.95	0.62	0.32	0.86	0.64	n/a	n/a
Ŋ	10-3/4	(273)	0.73	0.73	0.70	0.62	0.94	0.94	0.84	0.62	0.70	0.61	0.58	0.55		0.53	0.35	0.18		1.00	0.69	0.36	0.89	0.66	0.57	n/a
/	12	(305)	0.76	0.76	0.72	0.63	1.00	1.00	0.91	0.66	0.72	0.62	0.59	0.56		0.63	0.41	0.21			0.82	0.42	0.94	0.70	0.61	n/a
<u></u>	14	(356)	0.80	0.80	0.76	0.66			1.00	0.72	0.76	0.64	0.61	0.57		0.79	0.51	0.27			1.00	0.53	1.00	0.76	0.65	n/a
Ce	16	(406)	0.84	0.84	0.80	0.68				0.78	0.80	0.66	0.62	0.58		0.97	0.63	0.33				0.65		0.81	0.70	n/a
tar	16-3/4	(425)	0.86	0.86	0.81	0.69				0.81	0.81	0.67	0.63	0.58		1.00	0.67	0.35				0.70		0.83	0.72	0.57
dis	18	(457)	0.89	0.89	0.83	0.70				0.85	0.83	0.68	0.64	0.59			0.75	0.39				0.78		0.86	0.74	0.60
lge	20	(508)	0.93	0.93	0.87	0.72				0.91	0.87	0.70	0.65	0.60			0.88	0.46				0.91		0.90	0.78	0.63
é	22	(559)	0.97	0.97	0.91	0.74				0.98	0.91	0.72	0.67	0.61			1.00	0.53				0.98		0.95	0.82	0.66
(s)	24	(610)	1.00	1.00	0.94	0.77				1.00	0.94	0.74	0.68	0.62				0.60				1.00		1.00	0.86	0.69
þ	20	(000)			1.00	0.79					1.00	0.70	0.70	0.03				0.00						1.00	0.09	0.72
acii	20	(762)			1.00	0.01					1.00	0.79	0.71	0.04				0.75							0.92	0.74
Sp	36	(01/)				0.00						0.01	0.73	0.03				1 00							1.00	0.84
	> /12	(314)				1.00						0.07	0.77	0.00				1.00							1.00	0.04
	40	(1213)				1.00						0.99	0.07	0.74												0.31

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to 0.30 T_{max} for 5d  $\leq$  s  $\leq$  16-in. and to 0.5 T_{max} for s > 16-in.

3 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with a thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using the design equations from ACI 318 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^{*}h_{ef}$ ,  $f_{AN}$  is applicable when edge distance,  $c < 3^{*}h_{ef}$ . If  $c \ge 3^{*}h_{ef}$ , then  $f_{AN} = f_{AN}$ .

5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{HV} = 1.0$ .

Anchor Fastening Technical Guide Edition 19 | 3.0 ANCHORING SYSTEMS | 3.2.3 HIT-RE 500 V3 EPOXY ADHESIVE ANCHORING SYSTEM Hilti, Inc. (U.S.) 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.com | 1-800-363-4458



#### Table 38 - Load adjustment factors for 7/8-in. diameter threaded rods in uncracked concrete^{1,2,3}

																	Edge	distar	nce in s	shear						
	7/8-ir	ı.	s	Spacing	g facto	or	Edg	e dista	ince fa	ctor	s	pacin	g facto	or			L			To an	d awa	y	Cor	ncrete	thickn	ess
L I	uncracl	ked		in ter	nsion		Ū	in ter	nsion			in sh	near4		-	Toward	d edge	•		from	edge		fa	actor ir	n shea	r ⁵
	concre	ete		f	AN			f	RN			f	AV			f	RV			f	RV			f	HV	
Emţ	edment	in.	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2
	h _{ef}	(mm)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.39	0.24	0.18	0.10	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.18	0.05	0.04	0.02	n/a	n/a	n/a	n/a
Ê	4-3/8	(111)	0.58	0.58	0.57	0.54	0.53	0.31	0.23	0.13	0.58	0.54	0.53	0.52	0.35	0.11	0.07	0.03	0.63	0.22	0.14	0.07	n/a	n/a	n/a	n/a
Ē	5	(127)	0.59	0.59	0.58	0.55	0.56	0.33	0.24	0.13	0.59	0.54	0.53	0.52	0.43	0.13	0.09	0.04	0.70	0.27	0.17	0.08	n/a	n/a	n/a	n/a
. <u>-</u>	5-1/2	(140)	0.60	0.60	0.59	0.55	0.58	0.34	0.25	0.14	0.60	0.55	0.54	0.52	0.50	0.15	0.10	0.05	0.76	0.31	0.20	0.09	0.65	n/a	n/a	n/a
	6	(152)	0.61	0.61	0.60	0.56	0.61	0.36	0.26	0.15	0.61	0.55	0.54	0.52	0.57	0.17	0.11	0.05	0.83	0.35	0.23	0.11	0.68	n/a	n/a	n/a
Ē	7	(178)	0.63	0.63	0.61	0.57	0.65	0.39	0.28	0.16	0.63	0.56	0.55	0.53	0.71	0.22	0.14	0.07	0.97	0.39	0.29	0.13	0.73	n/a	n/a	n/a
ess	8	(203)	0.65	0.65	0.63	0.58	0.71	0.42	0.31	0.17	0.65	0.57	0.55	0.53	0.87	0.27	0.17	0.08	1.00	0.42	0.33	0.16	0.78	n/a	n/a	n/a
윙	9	(229)	0.67	0.67	0.64	0.59	0.76	0.45	0.33	0.18	0.67	0.58	0.56	0.54	1.00	0.32	0.21	0.10		0.45	0.35	0.19	0.83	n/a	n/a	n/a
ĬĨ	9-7/8	(251)	0.69	0.69	0.66	0.59	0.80	0.48	0.35	0.19	0.69	0.59	0.56	0.54		0.37	0.24	0.11		0.48	0.37	0.22	0.87	0.59	n/a	n/a
ite.	10	(254)	0.69	0.69	0.66	0.60	0.81	0.49	0.35	0.19	0.69	0.59	0.57	0.54		0.38	0.24	0.11		0.49	0.37	0.23	0.87	0.59	n/a	n/a
5 E	11	(279)	0.71	0.71	0.67	0.60	0.87	0.52	0.38	0.21	0.71	0.60	0.57	0.54		0.43	0.28	0.13		0.52	0.40	0.26	0.91	0.62	n/a	n/a
ر کار	12	(305)	0.73	0.73	0.69	0.61	0.92	0.56	0.40	0.22	0.73	0.60	0.58	0.55		0.49	0.32	0.15		0.56	0.42	0.29	0.95	0.65	n/a	n/a
2	12-1/2	(318)	0.74	0.74	0.70	0.62	0.95	0.59	0.41	0.23	0.74	0.61	0.58	0.55		0.52	0.34	0.16		0.59	0.43	0.29	0.97	0.66	0.57	n/a
S S	14	(356)	0.76	0.76	0.72	0.63	1.00	0.66	0.46	0.25	0.77	0.62	0.59	0.55		0.62	0.40	0.19		0.66	0.47	0.31	1.00	0.70	0.60	n/a
ge	16	(406)	0.80	0.80	0.75	0.65		0.75	0.52	0.29	0.80	0.64	0.60	0.56		0.76	0.49	0.23		0.75	0.52	0.34		0.75	0.65	n/a
tar	18	(457)	0.84	0.84	0.79	0.67		0.84	0.59	0.32	0.84	0.66	0.62	0.57		0.91	0.59	0.27		0.84	0.59	0.36		0.79	0.68	n/a
Dis	19-1/2	(495)	0.87	0.87	0.81	0.69		0.92	0.64	0.35	0.87	0.67	0.63	0.58		1.00	0.66	0.31		0.92	0.64	0.38		0.82	0.71	0.55
ge	20	(508)	0.88	0.88	0.82	0.69		1.00	0.65	0.36	0.88	0.67	0.63	0.58			0.69	0.32		1.00	0.65	0.39		0.83	0.72	0.50
囧	22	(009)	0.91	0.91	0.00	0.71		1.00	0.72	0.40	0.92	0.09	0.64	0.59			0.00	0.37		1.00	0.72	0.41		0.07	0.70	0.59
) (s	24	(660)	0.95	0.95	0.00	0.75			0.76	0.43	0.90	0.71	0.00	0.59			1 00	0.42			0.70	0.44		0.91	0.79	0.61
Ď	20	(711)	1.00	1.00	0.91	0.73			0.00	0.47	1.00	0.73	0.07	0.00			1.00	0.40			0.00	0.47		0.95	0.02	0.64
gi	30	(762)	1.00	1.00	0.04	0.70			0.01	0.50	1.00	0.74	0.00	0.62				0.50			0.01	0.50		1.00	0.00	0.68
Š	36	(914)			1.00	0.84			1.00	0.65		0.81	0.73	0.64				0.77			1.00	0.65		1.00	0.97	0.75
	> 48	(1219)				0.96				0.86		0.92	0.81	0.69				1.00				0.86			1.00	0.87

Table 39 - Load adjustment factors for 7/8-in. diameter threaded rods in cracked concrete^{1,2,3}

																	Edge	distar	ice in :	shear						
	7/8-ir	ı.	s	pacing	g facto	or	Edg	e dista	ince fa	ctor	s	pacin	g facto	or			L			To an	d awa	у	Cor	ncrete	thickn	ess
	cracke	ed		in ter	nsion		-	in ter	nsion			in sh	near4		-	Toward	d edge			from	edge		fa	actor in	n shear	r⁵
	concre	ete		f,	AN			$f_{1}$	RN			f	AV			$f_{1}$	RV			$f_{\rm F}$	RV			$f_{i}$	HV	
Emb	edment	in.	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2
	h _{ef}	(mm)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.42	0.42	0.41	0.38	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.18	0.06	0.04	0.02	n/a	n/a	n/a	n/a
Ê	4-3/8	(111)	0.58	0.58	0.57	0.54	0.53	0.53	0.50	0.44	0.58	0.54	0.53	0.52	0.36	0.11	0.07	0.03	0.71	0.22	0.14	0.07	n/a	n/a	n/a	n/a
Ē	5	(127)	0.59	0.59	0.58	0.55	0.56	0.56	0.52	0.45	0.60	0.54	0.53	0.52	0.43	0.13	0.09	0.04	0.87	0.27	0.17	0.08	n/a	n/a	n/a	n/a
. <u>-</u>	5-1/2	(140)	0.60	0.60	0.59	0.55	0.58	0.58	0.54	0.46	0.61	0.55	0.54	0.52	0.50	0.15	0.10	0.05	1.00	0.31	0.20	0.10	0.65	n/a	n/a	n/a
;	6	(152)	0.61	0.61	0.60	0.56	0.61	0.61	0.56	0.47	0.61	0.55	0.54	0.52	0.57	0.18	0.11	0.06		0.35	0.23	0.11	0.68	n/a	n/a	n/a
Ê	7	(178)	0.63	0.63	0.61	0.57	0.65	0.65	0.60	0.49	0.63	0.56	0.55	0.53	0.72	0.22	0.14	0.07		0.44	0.29	0.14	0.73	n/a	n/a	n/a
les	8	(203)	0.65	0.65	0.63	0.58	0.71	0.71	0.64	0.52	0.65	0.57	0.55	0.53	0.88	0.27	0.18	0.09		0.54	0.35	0.17	0.78	n/a	n/a	n/a
윙	9	(229)	0.67	0.67	0.64	0.59	0.76	0.76	0.68	0.54	0.67	0.58	0.56	0.54	1.00	0.32	0.21	0.10		0.65	0.42	0.20	0.83	n/a	n/a	n/a
Ē	9-7/8	(251)	0.69	0.69	0.66	0.59	0.80	0.80	0.72	0.56	0.69	0.59	0.56	0.54		0.37	0.24	0.12		0.74	0.48	0.23	0.87	0.59	n/a	n/a
fe	10	(254)	0.69	0.69	0.66	0.60	0.81	0.81	0.73	0.56	0.69	0.59	0.57	0.54		0.38	0.25	0.12		0.76	0.49	0.24	0.87	0.59	n/a	n/a
Cre	11	(279)	0.71	0.71	0.67	0.60	0.87	0.87	0.77	0.59	0.71	0.60	0.57	0.54		0.44	0.28	0.14		0.87	0.57	0.28	0.92	0.62	n/a	n/a
ő	12	(305)	0.73	0.73	0.69	0.61	0.92	0.92	0.82	0.61	0.73	0.60	0.58	0.55		0.50	0.32	0.16		1.00	0.65	0.31	0.96	0.65	n/a	n/a
~	12-1/2	(318)	0.74	0.74	0.70	0.62	0.95	0.95	0.84	0.62	0.74	0.61	0.58	0.55		0.53	0.34	0.17			0.69	0.33	0.98	0.66	0.57	n/a
0 B	14	(356)	0.76	0.76	0.72	0.63	1.00	1.00	0.91	0.66	0.77	0.62	0.59	0.56		0.63	0.41	0.20			0.82	0.40	1.00	0.70	0.61	n/a
e	16	(406)	0.80	0.80	0.75	0.65			1.00	0.71	0.81	0.64	0.60	0.56		0.77	0.50	0.24			1.00	0.48		0.75	0.65	n/a
tan	18	(457)	0.84	0.84	0.79	0.67				0.76	0.84	0.66	0.62	0.57		0.91	0.59	0.29				0.58		0.79	0.69	n/a
Dis.	19-1/2	(495)	0.87	0.87	0.81	0.69				0.80	0.87	0.67	0.63	0.58		1.00	0.67	0.32				0.65		0.82	0./1	0.56
ge	20	(508)	0.88	0.88	0.82	0.69				0.82	0.88	0.67	0.63	0.58			0.70	0.34				0.67		0.84	0.72	0.57
Ш	22	(559)	0.91	0.91	0.85	0.71				0.87	0.92	0.69	0.64	0.59			0.80	0.39				0.78		0.88	0.76	0.60
)()	24	(010)	0.95	0.95	0.00	0.73				0.93	1.00	0.71	0.00	0.60			1.00	0.44				0.09		0.92	0.79	0.62
j j	20	(000)	1.00	1.00	0.91	0.75				1.00	1.00	0.73	0.07	0.61			1.00	0.50				1.00		0.95	0.02	0.65
cin	20	(762)	1.00	1.00	0.94	0.77				1.00		0.74	0.00	0.01				0.00				1.00		1.00	0.00	0.07
Spa	36	(102)			1.00	0.79						0.76	0.70	0.62				0.02						1.00	0.09	0.70
0,	> 18	(1210)			1.00	0.04						0.01	0.74	0.00				1.00							1.00	0.70
	~ 40	(1219)				0.90						0.92	0.01	0.09				1.00							1.00	0.00

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to 0.30  $T_{max}$  for 5d  $\leq$  s  $\leq$  16-in. and to 0.5  $T_{max}$  for s > 16-in.

3 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with a thin concrete member) the design can become very conservative.

To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using the design equations from ACI 318 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^{*}h_{ef}$ ,  $f_{AV}$  is applicable when edge distance,  $c < 3^{*}h_{ef}$ . If  $c \ge 3^{*}h_{ef}$ , then  $f_{AV} = f_{AN}$ .

5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{el}$ . If  $c \ge 3^*h_{el}$ , then  $f_{HV} = 1.0$ .

																	Edge	distar	nce in :	shear						
	1-in.		S	bacin	a facto	or	Eda	e dista	ance fa	ctor	s	pacin	a facto	or						To an	d awa	v	Cor	ncrete	thickn	ess
ι	uncrack	ked	-	in ter	nsion		- 5	in ter	nsion		-	in sh	near ⁴		-	Toward	d edge			from	edge	, ,	fa	actor in	n shea	r ⁵
	concre	te		f	ΔΝ			f	RN			f	Δ٧			f	RV			$f_{i}$	RV			f	HV	
Emb	edment	in.	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20
	h,	(mm)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.38	0.24	0.18	0.10	n/a	n/a	n/a	n/a	0.08	0.02	0.01	0.01	0.15	0.05	0.03	0.01	n/a	n/a	n/a	n/a
Ê	5	(127)	0.58	0.58	0.57	0.54	0.53	0.32	0.23	0.13	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.65	0.22	0.14	0.07	n/a	n/a	n/a	n/a
Ē	6	(152)	0.60	0.60	0.58	0.55	0.58	0.34	0.25	0.14	0.60	0.55	0.53	0.52	0.48	0.14	0.09	0.04	0.74	0.29	0.19	0.09	n/a	n/a	n/a	n/a
<u> </u>	6-1/4	(159)	0.60	0.60	0.59	0.55	0.59	0.35	0.26	0.14	0.61	0.55	0.54	0.52	0.51	0.15	0.10	0.05	0.77	0.30	0.20	0.09	0.65	n/a	n/a	n/a
	7	(178)	0.62	0.62	0.60	0.56	0.62	0.37	0.27	0.15	0.62	0.55	0.54	0.52	0.61	0.18	0.12	0.05	0.87	0.36	0.23	0.11	0.69	n/a	n/a	n/a
Ē	8	(203)	0.63	0.63	0.61	0.57	0.66	0.40	0.29	0.16	0.64	0.56	0.55	0.53	0.74	0.22	0.14	0.07	0.99	0.40	0.29	0.13	0.74	n/a	n/a	n/a
ess	9	(229)	0.65	0.65	0.63	0.58	0.71	0.43	0.31	0.17	0.65	0.57	0.55	0.53	0.89	0.26	0.17	0.08	1.00	0.43	0.34	0.16	0.78	n/a	n/a	n/a
¥[	10	(254)	0.67	0.67	0.64	0.58	0.75	0.46	0.33	0.18	0.67	0.58	0.56	0.53	1.00	0.31	0.20	0.09		0.46	0.35	0.19	0.83	n/a	n/a	n/a
Ĕ	11	(279)	0.68	0.68	0.65	0.59	0.80	0.49	0.35	0.19	0.69	0.58	0.56	0.54		0.35	0.23	0.11		0.49	0.37	0.21	0.87	n/a	n/a	n/a
[e]	11-1/4	(286)	0.69	0.69	0.66	0.59	0.81	0.50	0.35	0.19	0.69	0.59	0.56	0.54		0.37	0.24	0.11		0.50	0.38	0.22	0.88	0.58	n/a	n/a
cre	12	(305)	0.70	0.70	0.67	0.60	0.85	0.52	0.37	0.20	0.70	0.59	0.57	0.54		0.40	0.26	0.12		0.52	0.39	0.24	0.91	0.60	n/a	n/a
õ	13	(330)	0.72	0.72	0.68	0.61	0.90	0.55	0.39	0.21	0.72	0.60	0.57	0.54		0.46	0.30	0.14		0.55	0.42	0.28	0.94	0.63	n/a	n/a
2	14	(356)	0.73	0.73	0.69	0.62	0.95	0.59	0.41	0.23	0.74	0.61	0.58	0.55		0.51	0.33	0.15		0.59	0.44	0.30	0.98	0.65	n/a	n/a
(c ^a	14-1/4	(362)	0.74	0.74	0.70	0.62	0.97	0.60	0.42	0.23	0.74	0.61	0.58	0.55		0.52	0.34	0.16		0.60	0.44	0.30	0.99	0.66	0.57	n/a
e	16	(406)	0.77	0.77	0.72	0.63	1.00	0.67	0.47	0.26	0.77	0.62	0.59	0.55		0.62	0.40	0.19		0.67	0.48	0.32	1.00	0.70	0.60	n/a
ano	18	(457)	0.80	0.80	0.75	0.65		0.76	0.53	0.29	0.81	0.64	0.60	0.56		0.74	0.48	0.22		0.76	0.53	0.34		0.74	0.64	n/a
Dist	20	(508)	0.84	0.84	0.78	0.67		0.84	0.58	0.32	0.84	0.65	0.61	0.57		0.87	0.56	0.26		0.84	0.58	0.36		0.78	0.67	n/a
je je	22	(559)	0.87	0.87	0.81	0.68		0.93	0.64	0.35	0.88	0.67	0.63	0.58		1.00	0.65	0.30		0.93	0.64	0.38		0.82	0.71	n/a
Ъ	22-1/4	(565)	0.87	0.87	0.81	0.69		0.94	0.65	0.36	0.88	0.67	0.63	0.58			0.66	0.31		0.94	0.65	0.39		0.82	0.71	0.55
1	24	(610)	0.90	0.90	0.83	0.70		1.00	0.70	0.38	0.91	0.68	0.64	0.58			0.74	0.35		1.00	0.70	0.41		0.85	0.74	0.57
S	26	(660)	0.94	0.94	0.86	0.72			0.76	0.42	0.94	0.70	0.65	0.59			0.84	0.39			0.76	0.43		0.89	0.77	0.60
ŭ	28	(711)	0.97	0.97	0.89	0.73			0.82	0.45	0.98	0.71	0.66	0.60			0.94	0.43			0.82	0.45		0.92	0.80	0.62
pac	30	(762)	1.00	1.00	0.92	0.75			0.88	0.48	1.00	0.73	0.67	0.60			1.00	0.48			0.88	0.48		0.95	0.83	0.64
S	36	(914)			1.00	0.80			1.00	0.58		0.77	0.70	0.62				0.63			1.00	0.58		1.00	0.91	0.70
	> 48	(1219)				0.90				0.77		0.86	0.77	0.66				0.98				0.77			1.00	0.81

#### Table 40 - Load adjustment factors for 1-in. diameter threaded rods in uncracked concrete^{1,2,3}

Table 41 ·	Load ad	ljustment	factors for	1-in.	diameter	threaded	l rods i	n cracked	concrete ^{1,2,3}
------------	---------	-----------	-------------	-------	----------	----------	----------	-----------	---------------------------

																	Edge	distar	nce in s	shear						
	1-in.		s	pacing	g facto	or	Edg	e dista	ince fa	actor	s	pacing	g facto	or		_	L			To an	d awa	y	Cor	ncrete	thickn	ess
	cracke	d		in ter	ision		Ũ	in ter	nsion			in sh	near ⁴		-	Toward	d edge	,		from	edge		fa	actor ir	n shea	r⁵
	concre	te		f	AN			f	RN			f	AV			f	RV -			$f_{i}$	- RV			f	HV	
Emb	edment	in.	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20
	h _{ef}	(mm)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.41	0.41	0.40	0.38	n/a	n/a	n/a	n/a	0.08	0.02	0.01	0.01	0.15	0.05	0.03	0.01	n/a	n/a	n/a	n/a
Ê	5	(127)	0.58	0.58	0.57	0.54	0.53	0.53	0.50	0.44	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.74	0.22	0.14	0.07	n/a	n/a	n/a	n/a
Ē	6	(152)	0.60	0.60	0.58	0.55	0.58	0.58	0.53	0.46	0.60	0.55	0.53	0.52	0.49	0.14	0.09	0.04	0.97	0.29	0.19	0.09	n/a	n/a	n/a	n/a
. <u> </u>	6-1/4	(159)	0.60	0.60	0.59	0.55	0.59	0.59	0.54	0.46	0.61	0.55	0.54	0.52	0.52	0.15	0.10	0.05	1.00	0.31	0.20	0.09	0.66	n/a	n/a	n/a
'.	7	(178)	0.62	0.62	0.60	0.56	0.62	0.62	0.57	0.47	0.62	0.55	0.54	0.52	0.61	0.18	0.12	0.05		0.36	0.24	0.11	0.69	n/a	n/a	n/a
Ê	8	(203)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.64	0.56	0.55	0.53	0.75	0.22	0.14	0.07		0.44	0.29	0.13	0.74	n/a	n/a	n/a
ess	9	(229)	0.65	0.65	0.63	0.58	0.71	0.71	0.64	0.51	0.65	0.57	0.55	0.53	0.89	0.26	0.17	0.08		0.53	0.34	0.16	0.79	n/a	n/a	n/a
Ř	10	(254)	0.67	0.67	0.64	0.58	0.75	0.75	0.67	0.53	0.67	0.58	0.56	0.53	1.00	0.31	0.20	0.09		0.62	0.40	0.19	0.83	n/a	n/a	n/a
Ē	11	(279)	0.68	0.68	0.65	0.59	0.80	0.80	0.71	0.55	0.69	0.58	0.56	0.54		0.36	0.23	0.11		0.72	0.46	0.22	0.87	n/a	n/a	n/a
E I	11-1/4	(286)	0.69	0.69	0.66	0.59	0.81	0.81	0.72	0.56	0.69	0.59	0.56	0.54		0.37	0.24	0.11		0.74	0.48	0.22	0.88	0.59	n/a	n/a
S	12	(305)	0.70	0.70	0.67	0.60	0.85	0.85	0.75	0.57	0.71	0.59	0.57	0.54		0.41	0.26	0.12		0.82	0.53	0.25	0.91	0.61	n/a	n/a
ğ	13	(330)	0.72	0.72	0.68	0.61	0.90	0.90	0.79	0.59	0.72	0.60	0.57	0.54		0.46	0.30	0.14		0.92	0.60	0.28	0.95	0.63	n/a	n/a
2	14	(356)	0.73	0.73	0.69	0.62	0.95	0.95	0.83	0.62	0.74	0.61	0.58	0.55		0.51	0.33	0.16		1.00	0.67	0.31	0.98	0.65	n/a	n/a
(c ^a	14-1/4	(362)	0.74	0.74	0.70	0.62	0.97	0.97	0.84	0.62	0.74	0.61	0.58	0.55		0.53	0.34	0.16			0.69	0.32	0.99	0.66	0.57	n/a
e	16	(406)	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.77	0.62	0.59	0.55		0.63	0.41	0.19			0.82	0.38	1.00	0.70	0.61	n/a
and	18	(457)	0.80	0.80	0.75	0.65			1.00	0.70	0.81	0.64	0.60	0.56		0.75	0.49	0.23			0.97	0.45		0.74	0.64	n/a
Dist	20	(508)	0.84	0.84	0.78	0.67				0.75	0.84	0.65	0.61	0.57		0.88	0.57	0.26			1.00	0.53		0.78	0.68	n/a
je [	22	(559)	0.87	0.87	0.81	0.68				0.80	0.88	0.67	0.63	0.58		1.00	0.66	0.31				0.61		0.82	0.71	n/a
ы В	22-1/4	(565)	0.87	0.87	0.81	0.69				0.80	0.88	0.67	0.63	0.58			0.67	0.31				0.62		0.82	0.71	0.55
1	24	(610)	0.90	0.90	0.83	0.70	-			0.85	0.91	0.68	0.64	0.58			0.75	0.35				0.70		0.86	0.74	0.57
s) [	26	(660)	0.94	0.94	0.86	0.72				0.90	0.95	0.70	0.65	0.59			0.84	0.39				0.78		0.89	0.77	0.60
ŭ.	28	(711)	0.97	0.97	0.89	0.73				0.95	0.98	0.71	0.66	0.60			0.94	0.44				0.88		0.92	0.80	0.62
pac	30	(762)	1.00	1.00	0.92	0.75				1.00	1.00	0.73	0.67	0.60			1.00	0.49				0.97		0.96	0.83	0.64
S	36	(914)			1.00	0.80						0.77	0.71	0.62				0.64				1.00		1.00	0.91	0.70
	> 48	(1219)				0.90						0.87	0.77	0.66				0.98							1.00	0.81

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to 0.30 T_{max} for 5d  $\leq$  s  $\leq$  16-in. and to 0.5 T_{max} for s > 16-in.

3 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with a thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using the design equations from ACI 318 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^{*}h_{ef}$ .  $f_{AV}$  is applicable when edge distance,  $c < 3^{*}h_{ef}$ . If  $c \ge 3^{*}h_{ef}$ , then  $f_{AV} = f_{AN}$ .

5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^{*}h_{ef}$ . If  $c \ge 3^{*}h_{ef}$ , then  $f_{HV} = 1.0$ .

139

3.2.3



																	Edge	distar	nce in a	shear						
	1-1/4-	in.	5	Spacin	g facto	or	Edg	e dista	ance fa	actor	5	Spacing	g facto	or		_	L			To an	d awa	y	Cor	ncrete	thickr	ness
ι	uncracl	ked		in ter	nsion		-	in te	nsion			in sh	near4			Toward	d edge	•		from	edge	-	fa	actor in	n shea	ur⁵
	concre	te		f	AN			f	RN			f	AV			f	RV -			f	- RV			f	нv	
Emb	edment	in.	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25
	h _{ef}	(mm)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)
ê	1-3/4	(44)	n/a	n/a	n/a	n/a	0.37	0.24	0.17	0.09	n/a	n/a	n/a	n/a	0.05	0.02	0.01	0.00	0.11	0.03	0.02	0.01	n/a	n/a	n/a	n/a
шп	6-1/4	(159)	0.59	0.59	0.57	0.54	0.54	0.33	0.24	0.13	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.67	0.22	0.14	0.07	n/a	n/a	n/a	n/a
Ľ.	7	(178)	0.60	0.60	0.58	0.55	0.57	0.35	0.25	0.13	0.60	0.54	0.53	0.52	0.43	0.13	0.08	0.04	0.73	0.26	0.17	0.08	n/a	n/a	n/a	n/a
.=	8	(203)	0.61	0.61	0.59	0.55	0.61	0.37	0.26	0.14	0.61	0.55	0.54	0.52	0.53	0.16	0.10	0.05	0.82	0.31	0.20	0.10	0.66	n/a	n/a	n/a
(L	9	(229)	0.63	0.63	0.60	0.56	0.64	0.39	0.28	0.15	0.62	0.55	0.54	0.52	0.63	0.19	0.12	0.06	0.93	0.38	0.24	0.11	0.70	n/a	n/a	n/a
SSS	10	(254)	0.64	0.64	0.61	0.57	0.68	0.41	0.29	0.16	0.64	0.56	0.55	0.53	0.74	0.22	0.14	0.07	1.00	0.41	0.29	0.13	0.74	n/a	n/a	n/a
kne	11	(279)	0.65	0.65	0.62	0.57	0.72	0.44	0.31	0.17	0.65	0.57	0.55	0.53	0.86	0.25	0.16	0.08		0.44	0.33	0.15	0.78	n/a	n/a	n/a
hic	12	(305)	0.67	0.67	0.63	0.58	0.76	0.46	0.33	0.18	0.66	0.57	0.55	0.53	0.98	0.29	0.19	0.09		0.46	0.36	0.17	0.81	n/a	n/a	n/a
teT	13	(330)	0.68	0.68	0.64	0.59	0.80	0.49	0.35	0.19	0.68	0.58	0.56	0.54	1.00	0.33	0.21	0.10		0.49	0.38	0.20	0.84	n/a	n/a	n/a
cret	14	(356)	0.70	0.70	0.66	0.59	0.84	0.52	0.36	0.20	0.69	0.59	0.56	0.54		0.36	0.24	0.11		0.52	0.40	0.22	0.87	0.58	n/a	n/a
oue	14-1/4	(362)	0.70	0.70	0.66	0.60	0.85	0.52	0.37	0.20	0.69	0.59	0.56	0.54		0.37	0.24	0.11		0.52	0.40	0.23	0.88	0.59	n/a	n/a
0	15	(381)	0.71	0.71	0.67	0.60	0.88	0.54	0.38	0.21	0.70	0.59	0.57	0.54		0.40	0.26	0.12		0.54	0.41	0.24	0.91	0.60	n/a	n/a
$(c_a)$	16	(406)	0.72	0.72	0.68	0.61	0.92	0.57	0.40	0.22	0.72	0.60	0.57	0.54		0.45	0.29	0.13		0.57	0.43	0.27	0.94	0.62	n/a	n/a
ce	17	(432)	0.74	0.74	0.69	0.61	0.96	0.60	0.42	0.23	0.73	0.60	0.58	0.55		0.49	0.32	0.15		0.60	0.45	0.29	0.96	0.64	n/a	n/a
tan	18	(457)	0.75	0.75	0.70	0.62	1.00	0.63	0.44	0.24	0.75	0.61	0.58	0.55		0.53	0.35	0.16		0.63	0.47	0.31	0.99	0.66	0.57	n/a
Dis	20	(508)	0.78	0.78	0.72	0.63		0.70	0.49	0.27	0.77	0.62	0.59	0.55		0.62	0.40	0.19		0.70	0.50	0.33	1.00	0.70	0.60	n/a
ge	22	(559)	0.81	0.81	0.74	0.65		0.77	0.54	0.29	0.80	0.63	0.60	0.56		0.72	0.47	0.22		0.77	0.54	0.35		0.73	0.63	n/a
Цq	24	(610)	0.84	0.84	0.77	0.66		0.84	0.59	0.32	0.83	0.65	0.61	0.57		0.82	0.53	0.25		0.84	0.59	0.36		0.76	0.66	n/a
) (	26	(660)	0.87	0.87	0.79	0.67		0.91	0.64	0.34	0.86	0.66	0.62	0.57		0.92	0.60	0.28		0.91	0.64	0.38		0.79	0.69	n/a
g (;	28	(711)	0.89	0.89	0.81	0.69		0.98	0.68	0.37	0.88	0.67	0.63	0.58		1.00	0.67	0.31		0.98	0.68	0.40		0.82	0.71	0.55
lcin	30	(762)	0.92	0.92	0.83	0.70		1.00	0.73	0.40	0.91	0.68	0.64	0.58			0.74	0.35		1.00	0.73	0.42		0.85	0.74	0.57
Spa	36	(914)	1.00	1.00	0.90	0.74			0.88	0.48	0.99	0.72	0.66	0.60			0.98	0.45			0.88	0.48		0.94	0.81	0.63
	> 48	(1219)			1.00	0.82			1.00	0.64	1.00	0.79	0.72	0.63			1.00	0.70			1.00	0.64		1.00	0.94	0.72

#### Table 42 - Load adjustment factors for 1-1/4-in. diameter threaded rods in uncracked concrete^{1,2,3}

#### Table 43 - Load adjustment factors for 1-1/4-in. diameter threaded rods in cracked concrete^{1,2,3}

																	Edge	distar	ice in	shear						
	1-1/4-	in.	s	spacing	g facto	or	Edg	e dista	ince fa	ctor	s	pacin	g facto	or			L		I	To an	d awa	y	Cor	ncrete	thickn	ess
	cracke	ed		in ter	nsion		-	in ter	nsion			in sh	near4		-	Toward	d edge	•		from	edge		fa	actor ir	h shea	r⁵
	concre	te		f	AN			$f_{i}$	RN			f	AV			f	RV -			$f_{\rm f}$	RV -			f	HV	
Emb	edment	in.	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25
	h _{ef}	(mm)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)
Ê	1-3/4	(44)	n/a	n/a	n/a	n/a	0.40	0.40	0.39	0.37	n/a	n/a	n/a	n/a	0.05	0.02	0.01	0.00	0.11	0.03	0.02	0.01	n/a	n/a	n/a	n/a
Ē	6-1/4	(159)	0.59	0.59	0.57	0.54	0.54	0.54	0.50	0.44	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.74	0.22	0.14	0.07	n/a	n/a	n/a	n/a
ċ	7	(178)	0.60	0.60	0.58	0.55	0.57	0.57	0.52	0.45	0.60	0.54	0.53	0.52	0.44	0.13	0.08	0.04	0.88	0.26	0.17	0.08	n/a	n/a	n/a	n/a
	8	(203)	0.61	0.61	0.59	0.55	0.61	0.61	0.55	0.46	0.61	0.55	0.54	0.52	0.54	0.16	0.10	0.05	1.00	0.32	0.21	0.10	0.66	n/a	n/a	n/a
Ê	9	(229)	0.63	0.63	0.60	0.56	0.64	0.64	0.57	0.48	0.62	0.55	0.54	0.52	0.64	0.19	0.12	0.06		0.38	0.25	0.11	0.70	n/a	n/a	n/a
ess	10	(254)	0.64	0.64	0.61	0.57	0.68	0.68	0.60	0.49	0.64	0.56	0.55	0.53	0.75	0.22	0.14	0.07		0.44	0.29	0.13	0.74	n/a	n/a	n/a
ž	11	(279)	0.65	0.65	0.62	0.57	0.72	0.72	0.63	0.51	0.65	0.57	0.55	0.53	0.86	0.26	0.17	0.08		0.51	0.33	0.15	0.78	n/a	n/a	n/a
j	12	(305)	0.67	0.67	0.63	0.58	0.76	0.76	0.66	0.53	0.66	0.57	0.55	0.53	0.98	0.29	0.19	0.09		0.58	0.38	0.18	0.81	n/a	n/a	n/a
Te I	13	(330)	0.68	0.68	0.64	0.59	0.80	0.80	0.69	0.54	0.68	0.58	0.56	0.54	1.00	0.33	0.21	0.10		0.66	0.43	0.20	0.85	n/a	n/a	n/a
cre	14	(356)	0.70	0.70	0.66	0.59	0.84	0.84	0.72	0.56	0.69	0.59	0.56	0.54		0.37	0.24	0.11		0.73	0.48	0.22	0.88	0.58	n/a	n/a
ő	14-1/4	(362)	0.70	0.70	0.66	0.60	0.85	0.85	0.73	0.56	0.70	0.59	0.57	0.54		0.38	0.25	0.11		0.75	0.49	0.23	0.89	0.59	n/a	n/a
2	15	(381)	0.71	0.71	0.67	0.60	0.88	0.88	0.75	0.57	0.71	0.59	0.57	0.54		0.41	0.26	0.12		0.82	0.53	0.25	0.91	0.61	n/a	n/a
(c ^a	16	(406)	0.72	0.72	0.68	0.61	0.92	0.92	0.78	0.59	0.72	0.60	0.57	0.54		0.45	0.29	0.14		0.90	0.58	0.27	0.94	0.63	n/a	n/a
e	17	(432)	0.74	0.74	0.69	0.61	0.96	0.96	0.81	0.61	0.73	0.60	0.58	0.55		0.49	0.32	0.15		0.98	0.64	0.30	0.97	0.64	n/a	n/a
tan	18	(457)	0.75	0.75	0.70	0.62	1.00	1.00	0.85	0.62	0.75	0.61	0.58	0.55		0.54	0.35	0.16		1.00	0.70	0.32	0.99	0.66	0.57	n/a
Si	20	(508)	0.78	0.78	0.72	0.63			0.91	0.66	0.77	0.62	0.59	0.55		0.63	0.41	0.19			0.82	0.38	1.00	0.70	0.61	n/a
ge	22	(559)	0.81	0.81	0.74	0.65			0.98	0.69	0.80	0.63	0.60	0.56		0.72	0.47	0.22			0.94	0.44		0.73	0.63	n/a
Ъ	24	(610)	0.84	0.84	0.77	0.66			1.00	0.73	0.83	0.65	0.61	0.57		0.82	0.54	0.25			1.00	0.50		0.77	0.66	n/a
)(	26	(660)	0.87	0.87	0.79	0.67				0.77	0.86	0.66	0.62	0.57		0.93	0.60	0.28				0.56		0.80	0.69	n/a
) 0	28	(711)	0.89	0.89	0.81	0.69				0.81	0.88	0.67	0.63	0.58		1.00	0.68	0.31				0.63		0.83	0.72	0.55
lcin	30	(762)	0.92	0.92	0.83	0.70				0.85	0.91	0.68	0.64	0.58			0.75	0.35				0.70		0.86	0.74	0.57
Spa	36	(914)	1.00	1.00	0.90	0.74				0.97	0.99	0.72	0.66	0.60			0.98	0.46				0.91		0.94	0.81	0.63
	> 48	(1219)			1.00	0.82				1.00	1.00	0.79	0.72	0.63			1.00	0.70				1.00		1.00	0.94	0.73

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the installation torque is reduced to 0.30  $T_{max}$  for 5d ≤ s ≤ 16-in. and to 0.5  $T_{max}$  for s > 16-in.

3 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with a thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using the design equations from ACI 318 Chapter 17.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{ef}$ ,  $f_{AV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{AV} = f_{AN}$ .

5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{HV} = 1.0$ .

#### HIT-RE 500 V3 adhesive with HIS-N and HIS-RN internally threaded insert



#### Figure 7 - Hilti HIS-N and HIS-RN internally threaded insert installation conditions

Cracked o	or uncracked concrete	Permis	ssible drilling methods	Permissib	le concrete conditions	
					Dry concrete	
			Hammer drilling		Water-saturated concrete	
	Cracked and	للتيتية)	with carbide-tipped drill bit	J	Water-filled holes	
	uncracked concrete				Submerged (underwater)	
		e P	Hilti TE-CD or TE-YD hollow drill bit		Dry concrete	
			Diamond core drill bit with Hilti TE-YRT roughening tool		Water-saturated concrete	
	Uncracked concrete	Uncracked concrete				Dry concrete
				Diamond core drill bit		Water-saturated concrete

#### Table 44 - HIS-N and HIS-RN specifications

Catting information	Cumbal	Linita		Thr	rea	dsize		
Setting mormation	Symbol	Units	3/8-16 UNC	1/2-13 UN	8	5/8-11 UNC	3	/4-10 UNC
Outside diameter of insert		in.	0.65	0.81	5	1.00		1.09
Nominal bit diameter	d	in.	11/16	7/8	(	1-1/8	1	1-1/4
Effective embedment	h	in.	4-3/8	5	(	6-3/4	イ	8-1/8
Ellective embedment	II _{ef}	(mm)	(110)	(125)	٢	(170)	$\boldsymbol{\prec}$	(205)
Thread approximate minimum	h	in.	3/8	1/2	۲	5/8		3/4
maximum	II _s	in.	15/16	1-3/16	٢	1-1/2		1-7/8
Installation taxous	т	ft-lb	15	30	C	60	1	100
Installation torque	inst	(Nm)	(20)	(40)	(	(81)	≺	(136)
Minimum concrete thickness	h	in.	5.9	6.7	7	9.1	く	10.6
Minimum concrete thickness	n _{min}	(mm)	(150)	(170)	۲	(230)		(270)
Minimum adra diatanaa	-	in	3-1/4	4	$\mathbf{F}$	5		5-1/2
Minimum edge distance	C _{min}	(mm)	(83)	(102)	6	(127)	1	(140)
Minimum anober angoing		in	3-1/4	4	C	5	7	5-1/2
winimum anchor spacing	s _{min}	(mm)	(83)	(102)	C	(127)	$\prec$	(140)
					~	1		

#### Figure 8 - Hilti HIS-N and HIS-RN specifications



3.2.3



			Tensior	η — ΦΝ _n			Shear	— ΦV _n	
Thread size	Effective	f' _c = 2,500 psi	f' _c = 3,000 psi	f' _c = 4,000 psi	f' _c = 6,000 psi	f′ _c = 2,500 psi	f' _c = 3,000 psi	f' _c = 4,000 psi	f' _c = 6,000 psi
	embedment	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)
	in. (mm)	Ib (kN)							
3/8-16	4-3/8	7,140	7,820	9,030	11,060	15,375	16,840	19,445	23,815
UNC	(111)	(31.8)	(34.8)	(40.2)	(49.2)	(68.4)	(74.9)	(86.5)	(105.9)
1/2-13 ¹⁰	5	8,720	9,555	11,030	13,510	18,785	20,575	23,760	29,100
UNC	(127)	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)
5/8-11 ¹⁰	6-3/4	13,680	14,985	17,305	21,190	29,460	32,275	37,265	45,645
UNC	(171)	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	(165.8)	(203.0)
3/4-10 ¹⁰	8-1/8	18,065	19,790	22,850	27,985	38,910	42,620	49,215	60,275
UNC	(206)	(80.4)	(88.0)	(101.6)	(124.5)	(173.1)	(189.6)	(218.9)	(268.1)

### Table 45 - Hilti HIT-RE 500 V3 adhesive design strength with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete^{1,2,3,4,5,6,7,8,9,11}

### Table 46 - Hilti HIT-RE 500 V3 adhesive design strength with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete^{1,2,3,4,5,6,7,8,9,11}

			Tension	— ΦΝ _n		Shear — $\Phi V_n$						
	Effective	<i>f</i> ′ _c = 2,500 psi	<i>f</i> ′ _c = 3,000 psi	<i>f</i> ′ _c = 4,000 psi	<i>f</i> ′ _c = 6,000 psi	<i>f</i> ′ _c = 2,500 psi	<i>f</i> ′ _c = 3,000 psi	<i>f</i> ′ _c = 4,000 psi	<i>f</i> ′ _c = 6,000 psi			
Thread	embedment	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)			
size	in. (mm)	lb (kN)										
3/8-16	4-3/8	5,055	5,540	6,395	7,085	10,890	11,930	13,775	15,260			
UNC	(111)	(22.5)	(24.6)	(28.4)	(31.5)	(48.4)	(53.1)	(61.3)	(67.9)			
1/2-1310	5	6,175	6,765	7,815	9,570	13,305	14,575	16,830	20,610			
(UNC)		(27.5)	(30.1)	(34.8)	(42)6)	(\$9.2)	(64,8)	74.9	(91.7)			
5/8-1110	6-3/4	9,690	10,615	12,255	15,010	20,870	22,860	26,395	32,330			
UNC	(171)	(43.1)	(47.2)	(54.5)	(66.8)	(92.8)	(101.7)	(117.4)	(143.8)			
3/1-100	<u>8-18</u>	12,795	14,015	16, 85	19,825	27,560	\$0,190	34,860	42,695			
UNC	(206)	(56.9)	(62.3)	(72.0)	(88.2)	(122.6)	(134.3)	(155.1)	(189.9)			

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength (factored resistance) value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 50 and 51 as necessary to the above values. Compare to the steel values in table 49. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130° F (55° C), max. long term temperature = 110° F (43° C). For temperature range B: Max. short term temperature = 176° F (80° C), max. long term temperature = 110° F (43° C) multiply above values by 0.69 Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

- 6 Tabular values are for dry concrete and water saturated concrete conditions. For water-filled drilled holes multiply design strength by 0.52.
- For submerged (under water) applications multiply design strength by 0.46.
- 7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
- 8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda_{a}$  as follows:

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ .

9 Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. Diamond core drilling is not permitted in cracked concrete except as indicated in note 10. For diamond core drilling in uncracked concrete, except as indicated in note 10, multiply the above values by 0.57. Diamond core drilling is not permitted for water-filled or under-water (submerged) applications in uncracked concrete.

10 Diamond core drilling is permitted in uncracked and cracked concrete with use of the Hilti TE-YRT roughening tool for 1/2-13 UNC, 5/8-11 UNC, and 3/4-10 UNC anchors in dry and water-saturated concrete. See Tables 47 and 48.

11 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by α_{seis} = 0.75. See section 3.1.8 for additional information on seismic applications.

#### **Anchor Fastening Technical Guide, Edition 19**

### Table 47 - Hilti HIT-RE 500 V3 in Core Drilled Holes roughened with TE-YRT Roughening Tool adhesive design strength with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete^{1,2,3,4,5,6,7,8}

			Tension	— ΦΝ _n			Shear	— ФV _п	
Thread size	Effective embedment in. (mm)	f' _c = 2,500 psi (17.2 MPa) Ib (kN)	f' _c = 3,000 psi (20.7 MPa) Ib (kN)	f' _c = 4,000 psi (27.6 MPa) Ib (kN)	f' _c = 6,000 psi (41.4 MPa) Ib (kN)	f' _c = 2,500 psi (17.2 MPa) Ib (kN)	f′ _c = 3,000 psi (20.7 MPa) Ib (kN)	f' _c = 4,000 psi (27.6 MPa) Ib (kN)	f' _c = 6,000 psi (41.4 MPa) Ib (kN)
1/2-13	5	8,720	9,555	11,030	13,510	18,785	20,575	23,760	29,100
UNC	(127)	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)
5/8-11	6-3/4	13,680	14,985	17,305	21,190	29,460	32,275	37,265	45,645
UNC	(171)	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	(165.8)	(203.0)
3/4-10	8-1/8	18,065	19,790	22,850	27,985	38,910	42,620	49,215	60,275
UNC	(206)	(80.4)	(88.0)	(101.6)	(124.5)	(173.1)	(189.6)	(218.9)	(268.1)

### Table 48 - Hilti HIT-RE 500 V3 in Core Drilled Holes roughened with TE-YRT Roughening Tool adhesive design strength with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete^{1,2,3,4,5,6,7,8,9}

				Tension	ΦΝ		Shear — $\Phi V_n$							
	Thread size	Effective embedment in. (mm)	f′ _c = 2,500 psi (17.2 MPa) Ib (kN)	f' _c = 3,000 psi (20.7 MPa) Ib (kN)	f' _c = 4,000 psi (27.6 MPa) Ib (kN)	f' _c = 6,000 psi (41.4 MPa) Ib (kN)	f' _c = 2,500 psi (17.2 MPa) Ib (kN)	f' _c = 3,000 psi (20.7 MPa) Ib (kN)	f' _c = 4,000 psi (27.6 MPa) Ib (kN)	f' _c = 6,000 psi (41.4 MPa) Ib (kN)				
	1/2-13 VNO	5	6,175	6,205	6,205	6,205	13,305	13,360	13,360	13,360	~			
-	5/8-11 UNC	6-3/4 (171)	9,690 (43.1)	10,340 (46.0)	10,340 (46.0)	10,340 (46.0)	20,870 (92.8)	22,265 (99.0)	22,265 (99.0)	22,265 (99.0)	1			
	3/4-10 UNC	(206)	12,795	13,565	13,565	18,565 (60.3)	27,560	29,215	29,215	<u>39,215</u> (130.0)	_			

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength (factored resistance) value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 50 and 51 as necessary to the above values. Compare to the steel values in table 49. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130° F (55° C), max. long term temperature = 110° F (43° C). For temperature range B: Max. short term temperature = 176° F (80° C), max. long term temperature = 110° F (43° C) multiply above values by 0.69 Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete and water saturated concrete conditions. Water-filled and submerged (underwater) applications are not permitted for this hole preparation method.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda_a$  as follows:

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ .

9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by  $\alpha_{seis}$  = 0.75. See section 3.1.8 for additional information on seismic applications.

### Table 49 - Steel design strength for steel bolt / cap screw for Hilti HIS-N and HIS-RN internally threaded inserts $^{\rm 1,2,3}$

			ASTM A 193 B7		AST	M A 193 Grade stainless steel	B8M	
	Thread size	Tensile⁴ ¢N _{sa} Ib (kN)	Shear⁵ φV _{sa} Ib (kN)	Seismic Shear ⁶ φV _{sa.eq} Ib (kN)	Tensile⁴ ¢N _{sa} Ib (kN)	Shear⁵ φV _{sa} Ib (kN)	Seismic Shear ⁶ φV _{sa,eq} Ib (kN)	
	3/8-16 UNC	6,300 (28.0)	3,490 (15.5)	2,445 (10.9)	5,540 (24.6)	3,070 (13.7)	2,150 (9.6)	
	1/2-13	10,525	6,385	4,470	10,145	5,620	3,935	$\sim$
ç	5/8-11 UNC	17,500 (77.8)	10,170 (45.2)	7,120 (31.7)	16,160 (71.9)	8,950 (39.8)	6,265 (27.9)	•
	UNC	(79.1)	(67.0)	(46.9)	(106.4)	(58.9)	9,2 <b>10</b> (41.2)	L

1 See Section 3.1.8 to convert design strength value to ASD value.

2 Hilti HIS-N and HIS-RN inserts with steel bolts are considered brittle steel elements.

3 Table values are the lesser of steel failure in the HIS-N insert or inserted steel bolt.

4 Tensile =  $\phi A_{se,N} f_{uta}$  as noted in ACI 318 Chapter 17.

5 Shear =  $\phi$  0.60 A_{se,V} f_{uta} as noted in ACI 318 Chapter 17.

6 Seismic Shear =  $\alpha_{V_{seis}} \phi V_{sa}$ : Reduction for seismic shear only. See section 3.1.8 for additional information on seismic applications.



#### Table 50 - Load adjustment factors for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete^{1,2}

HIS	N and H											Edge Distance in Shear														
2011	III diame	ters		Spacin	a facto		Ede	ae dista	ince fac	tor		Spacin	a factor							∥ To an	d awav		Concrete thickne			
	uncrack	ed		in ter	nsion			in ter	nsion			in sh	near ³			Toward	d edae			from	edae		1	factor in	n shear	1
	concre	te		f	ΔN			f	RN			f	Δ٧			f	RV			f	RV			f	HV	
In	tornal	in	3/8	1/2	5/8	3/4	3/8	1/2		3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4
dia	ameter	(mm)	(9.5)	(12.7)	(15.9)	(19 1)	(9.5)	(12.7)	(15.9)	(19.1)	(9.5)	(12.7)	(15.9)	(19.1)	(9.5)	(12.7)	(15.9)	(19.1)	(9.5)	(12.7)	(15.9)	(19 1)	(9.5)	(12.7)	(15.9)	(19 1)
Fach		in	1-3/8	5	6-3/4	8-1/8	1-3/8	5	6-3/4	8-1/8	1-3/8	5	6-3/4	8-1/8	(0.0)	5	6-3/4	8-1/8	1-3/8	5	6-3/4	8-1/8	(0.0)	5	6-3/4	8-1/8
Emc	beament	(mm)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)
2	3 1 //	(1111)	0.50	(127) n/a	n/a	(200)	0.36	(127) n/a	(171) n/a	(200) n/a	0.55	(127) n/a	n/a	(200)	0.15	(127) n/a	(171) n/o	(200) n/a	0.31	(127) n/a	(171) n/a	(200) n/a	(111) n/a	(127) n/a	(171) n/a	(200) n/a
Ē	J-1/4	(102)	0.55	0.50	n/a	n/a	0.00	0.40	n/a	n/a	0.55	0.55	n/a	n/a	0.13	0.19	n/a	n/a	0.01	0.38	n/a	n/a	n/a	n/a	n/a	n/a
.⊑	5	(127)	0.64	0.55	0.59	n/a	0.41	0.45	0.39	n/a	0.50	0.55	0.55	n/a	0.21	0.15	0.17	n/a	0.47	0.00	0.33	n/a	n/a	n/a	n/a	n/a
Ê	5-1/2	(140)	0.65	0.62	0.60	0.59	0.50	0.48	0.00	0.37	0.58	0.58	0.56	0.55	0.34	0.20	0.17	0.15	0.50	0.48	0.39	0.29	n/a	n/a	n/a	n/a
sss (	6	(152)	0.66	0.63	0.60	0.60	0.53	0.51	0.43	0.39	0.59	0.58	0.56	0.55	0.39	0.35	0.22	0.10	0.53	0.51	0.00	0.33	0.60	n/a	n/a	n/a
ж Ж	7	(178)	0.69	0.65	0.62	0.61	0.61	0.57	0.48	0.42	0.60	0.60	0.57	0.56	0.00	0.43	0.28	0.21	0.61	0.57	0.48	0.42	0.64	0.62	n/a	n/a
Ę	8	(203)	0.72	0.67	0.64	0.63	0.70	0.65	0.52	0.45	0.62	0.61	0.58	0.57	0.60	0.53	0.34	0.26	0.70	0.65	0.52	0.45	0.69	0.66	n/a	n/a
rete	9	(229)	0.74	0.70	0.66	0.65	0.78	0.73	0.57	0.49	0.63	0.62	0.59	0.58	0.71	0.63	0.40	0.31	0.78	0.73	0.57	0.49	0.73	0.70	n/a	n/a
- Si	10	(254)	0.77	0.72	0.68	0.66	0.87	0.81	0.62	0.53	0.65	0.64	0.60	0.58	0.83	0.74	0.47	0.36	0.87	0.81	0.62	0.53	0.77	0.74	0.64	n/a
0/0	11	(279)	0.80	0.74	0.69	0.68	0.96	0.89	0.68	0.56	0.66	0.65	0.61	0.59	0.96	0.86	0.55	0.41	0.96	0.89	0.68	0.56	0.81	0.78	0.67	0.61
о° е	12	(305)	0.82	0.76	0.71	0.69	1.00	0.97	0.74	0.60	0.68	0.66	0.62	0.60	1.00	0.98	0.62	0.47	1.00	0.97	0.74	0.60	0.84	0.81	0.70	0.64
ano	14	(356)	0.88	0.80	0.75	0.73		1.00	0.86	0.70	0.71	0.69	0.64	0.62		1.00	0.78	0.59		1.00	0.86	0.70	0.91	0.87	0.75	0.69
dist	16	(406)	0.93	0.85	0.78	0.76			0.98	0.80	0.74	0.72	0.66	0.63			0.96	0.73			0.98	0.80	0.97	0.94	0.80	0.73
dge	18	(457)	0.99	0.89	0.82	0.79			1.00	0.90	0.77	0.75	0.68	0.65			1.00	0.87			1.00	0.90	1.00	0.99	0.85	0.78
/e	24	(610)	1.00	1.00	0.92	0.89				1.00	0.85	0.83	0.74	0.70				1.00				1.00		1.00	0.99	0.90
3 (s)	30	(762)			1.00	0.98					0.94	0.91	0.80	0.75											1.00	1.00
gi	36	(914)				1.00					1.00	0.99	0.86	0.80												
Sp	> 48	(1219)											0.99	0.90												

#### Table 51 - Load adjustment factors for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete^{1,2}

HIS	N and H	IIS-RN									Edge Distance in Shear															
a	II diame	ters		Spacin	a facto	r	Edd	ae dista	ance fa	ctor		Spacin	a facto	r						∥ To an	d away	,	Co	ncrete	thickne	SS
	cracke	d		in te	nsion			in ter	nsion			in st	near ³			Towar	d edge	<u> </u>		from	edge		1	actor i	shear	
	concre	te		f	AN	r		F	R	$\sim$		( f	AV	5		( f	RV	$\mathcal{D}$		( f	RV			f	HV	
In	ternal	in.	3/8	12	5/8	3/4	3/8	1/2	5/8	3/4	3/8	7/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	<b>*</b> /4	3/8	1/2	5/8	-3(4
dia	meter	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(9.5)	(12.7)	(15.9)	(19.1)	(9.5)	(12.7)	(15.9)	(19.1)	(9.5)	(12.7)	(15.9)	(19.)	(9.5)	(12.7)	(15.9)	(19.1)	(9.5)	(12.7)	(15.9)	(19.1)
Emb	edment	in.	4-3/8	6	6-3/4	8//8	4-3/8	5	6-3/4	8 1/8	4-3/8	5	6-3/4	81/8	4-3/8	-	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8
	h _{ef}	(mm)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(208)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)
Ê	3-1/4	(83)	0.59	r/a	n/a	n/a	0.54	n/a	n/a	-√a	0.55	h/a	n/a	nya	0.16	n/a	n/a	n/a	0.31	n/a	n/a	n/a	n/a	n/a	n/a	n/a
E.	4	(102)	0.61	0.89	n/a	n/a	0.59	0.34	n/a	n/a	0.56	0.55	n/a	_∎/a	0.21	0.19	n/a	n/a	0.42	0.38	n/a	∎⁄a	n/a	h/a	n/a	nya
.⊑ '	5	(127)	0.64	0.61	0.59	n/a	0.66	0.60	0.54	nya	0.57	0.57	0.55	na	0.30	0.25	0.17	n/a	0.59	0,53	0.34	n/a	n/a	n/a	n/a	na
Ê	5-1/2	(140)	0.65	0 62	0.60	0.69	0.70	0.62	0.57	0.55	0.58	0.58	0.56	0,55	0.34	0.81	0.19	0.15	0.69	0.61	0.39	0,29	n/a	n/a	n/a	nja
ess	6	(152)	0.66	0.63	0.61	0.60	0.74	0.65	0.59	0.57	0.59	0.58	0.56	0,55	0.39	0.35	0.22	0.17	0.74	0.65	0.44	0.34	0.60	n/a	n/a	_∎/a
ick	7	(178)	0.69	065	0.62	0.61	0.81	0.71	0.63	61	0.60	0.60	0.57	0.66	0.49	0.44	0.28	0.2	0.81	0.71	0.56	0.42	0.64	0.62	n/a	n/a
eth	8	(203)	0.72	0.07	0.64	0.63	0.89	077	0.68	0 65	0.62	0.61	0.58	0.57	0.60	0.54	0.34	0.26	0.89	0.77	0.68	8,52	0.69	0.66	n/a	n∕a
cret	9	(229)	0.74	070	0.66	0.65	0.98	0.83	0.73	0,69	0.63	0,62	0.59	0.58	0.72	0.64	0.41	0.3	0.98	0,83	0.73	0 62	0.73	070	n/a	n/a
ğ	10	(254)	0.77	0/72	0.68	0.66	1.00	0.90	0.78	0.73	0.65	0.64	0.60	658	0.84	0.75	0.48	0.36	1.00	0.90	0.78	0,72	0.77	0.74	0.64	nja
() ()	11	(279)	0.80	0.74	0.69	0.68		0.96	0.83	0,78	0.66	0,65	0.61	0,59	0.97	0.86	0.55	0.42		0.96	0.83	0.78	0.81	0.78	0.67	0,61
8	12	(305)	0.82	076	0.71	0.69		1.00	0.88	-6,83	0.68	0.66	0.62	0.60	1.00	0.98	0.63	0.48		.00	0.88	0.83	0.84	0.81	0.70	0.64
tanc	14	(356)	0.88	0.20	0.75	0.73		7	0.99	0,92	0.71	0.69	0.64	0.62		1.00	0.79	0.60		7	0.99	<b>£</b> 92	0.91	Q.88	0.76	0.69
dis	16	(406)	0.93	085	0.78	0.76		(	1.00	1,00	0.74	0.72	0.66	0.64			0.97	0.73		Y	1.00	1,00	0.97	0.94	0.81	0.74
gg	18	(457)	0.99	0 69	0.82	079		7			0.77	0.75	0.68	865		(	1.00	0:87		(		1	1.00	0.99	0.86	0.78
)e	24	(610)	1.00	1.00	0.92	0.89					0.86	0,83	0.74	0.70		7		1.00		7				1.00	0.99	0,90
s) [	30	(762)			1.00	0.98		(		く	0.95	0.91	0.81	0.75								$\gamma$			1.00	1.00
acir	36	(914)		Y		1.00		Y			1.00	0,99	0.87	0.80				7				$\checkmark$			1	
g	> 48	(1219)				T			1	<u>r</u>		1.00	1 99	0.91			Γ Γ				$\sim$				$\sim$	

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with a thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using the design equations from ACI 318 Chapter 17.

3 Spacing factor reduction in shear applicable when  $c < 3^{*}h_{ef}$ .  $f_{AV}$  is applicable when edge distance,  $c < 3^{*}h_{ef}$ . If  $c \ge 3^{*}h_{ef}$ , then  $f_{AV} = f_{AN}$ .

4 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{HV} = 1.0$ .

-

### **DESIGN DATA IN CONCRETE PER CSA A23.3**

#### CSA A23.3-14 Annex D design

Limit State Design of anchors is described in the provisions of CSA A23.3-14 Annex D for post-installed anchors tested and assessed in accordance with ACI 355.2 for mechanical anchors and ACI 355.4 for adhesive anchors. This section contains the Limit State Design tables with unfactored characteristic loads that are based on the published loads in ICC Evaluation Services ESR-3814 and ELC-3814. These tables are followed by factored resistance tables. The factored resistance tables have characteristic design loads that are prefactored by the applicable reduction factors for a single anchor with no anchor-to-anchor spacing or edge distance adjustments for the convenience of the user of this document. All the figures in the previous ACI 318-14 Chapter 17 design section are applicable to Limit State Design and the tables will reference these figures.

For a detailed explanation of the tables developed in accordance with CSA A23.3-14 Annex D, refer to Section 3.1.8. Technical assistance is available by contacting Hilti Canada at (800) 363-4458 or at www.hilti.com.

#### HIT-RE 500 V3 adhesive with Deformed Reinforcing Bars (Rebar)

#### Table 52 - Specifications for CA rebar installed with Hilti HIT-RE 500 V3

Catting information		Cumbal	Linita	Rebar size							
Setting information		Symbol	Units	10M	15M	20M	25M	30M			
Nominal bit diamete	r	d。	in.	9/16	3/4	3/4 1 1-1/4					
Effective	minimum	h _{ef,min}	mm	60	80	90	100	120			
embedment	maximum	h _{ef,max}	mm	226	320 390 504			598			
Minimum concrete r	h _{min}	mm	h _{ef} + 30		h _{ef} +	2d _o					

Note: The installation specifications in table 52 above and the data in tables 53 through 67 pertain to the use of Hilti HIT-RE 500 V3 with rebar designed as a post-installed anchor using the provisions of CSA A23.3-14 Annex D. For the use of Hilti HIT-RE 500 V3 with rebar for typical development calculations according to CSA A23.3-14 Chapter 12, refer to section 3.1.8 for the design method and tables 88 through 92 in section 3.2.4.

#### CSA-G30.18 Grade 400² Seismic Tensile³ Shear⁴ shear⁵ V_{sa} V_{sa} Rebar N. lb (kN) lb (kN) lb (kN) size 7,245 4,035 2,825 10M (32.2)(17.9)(12.6)14,525 8,090 5,665 15M (36.0)(64.6) (25.2)21,570 12,020 8,415 20M (95.9)(53.5)(37.4)36,025 20,070 14,050 25M (160.2)(89.3)(62.5)50,715 28,255 19.780 30M (225.6)(125.7)(88.0)

#### Table 53 - Steel factored resistance for CA rebar¹

See Section 3.1.8 to convert design strength value to ASD value. 1

CSA-G30.18 Grade 400 rebar are considered ductile steel elements. 2

Tensile =  $A_{se,N} \varphi_s f_{uta} R$  as noted in CSA A23.3-14 Annex D 3

4

 $Shear = A_{se,V} \varphi_{s}^{s} 0.60 \; f_{tila} \; R \; as \; noted \; in \; CSA \; A23.3-14 \; Annex \; D. \\ Seismic \; Shear = \alpha_{vseis} \; V_{sais} : \; Reduction \; factor \; for \; seismic \; shear \; only.$ See section 3.1.8 for additional information on seismic applications.



### Table 54 - Hilti HIT-RE 500 V3 adhesive design information with CA rebar in hammer drilled holes in accordance with CSA A23.3-14 Annex $D^{1,8}$

*

<u> </u>						Rebar size			Ref	
Desig	n parameter	Symbol	Units	10M	15M	20M	25M	30M	A23.3-14	
Ancho	or O.D.	d _a	-	11.3	16.0	19.5	25.2	29.9		
Effect	ive minimum embedment ²	h _{ef}	-	60	80	90	101	120		
Effect	ive maximum embedment ²	h _{ef}	-	226	320	390	504	598		
Min. d	concrete thickness ²	h _{min}	-	h _{ef} + 30		h _{ef} +	2d ₀			
Critica	al edge distance	C _{ac}	-			2h _{ef}				
Minim	num edge distance	C _{min} ³	-	57	80	98	126	150		
Minim	num anchor spacing	S _{min}	-	57	80	98	126	150		
Coeff	for factored conc. breakout resistance, uncracked concrete	k _{c,uncr} ⁴	k _{c,uncr} ⁴ - 10							
Coeff	for factored conc. breakout resistance, cracked concrete	k _{c,cr} ⁴	-			7			D.6.2.2	
Conc	rete material resistance factor	фс	-			0.65			8.4.2	
Resis mode	tance modification factor for tension and shear, concrete failure s, Condition $B^{\scriptscriptstyle 5}$	R _{conc}	-			1.00			D.5.3(c)	
	Dry cor	ncrete and v	water sat	turated						
9	Characteristic bond stress in cracked concrete ^{7,8}	τ	psi	1,360	1,390	1,410	1,420	1,380	D652	
np. je A		Cr	(MPa)	(9.4)	(9.6)	(9.7)	(9.8)	(9.5)	D.0.3.2	
Tei	Characteristic bond stress in uncracked concrete ^{7,8}	τ.	psi	1,760	1,720	1,690	1,650	1,610	D652	
		uncr	(MPa)	(12.1)	(11.9)	(11.7)	(11.4)	(11.1)	D.0.0.2	
. °°	Characteristic bond stress in cracked concrete ^{7,8}	т	psi	940	960	970	980	950	D652	
je E		Cr	(MPa)	(6.5)	(6.6)	(6.7)	(6.8)	(6.6)	D.0.3.2	
Tel	Characteristic bond stress in uncracked concrete ^{7,8}	- τ	psi	1,210	1,190	1,170	1,140	1,110	D652	
	Characteristic bond stress in uncracked concrete	uncr	(MPa)	(8.3)	(8.2)	(8.1)	(7.9)	(7.7)	D.0.3.2	
Ancho	or category, dry concrete	-	-	1	1	1	1	1	D 5 3(c)	
Resis	tance modification factor	R _{dry}	-	1.00	1.00	1.00	1.00	1.00	D.0.0(0)	
		Water-fille	d hole							
. 9	Characteristic bond stress in cracked concrete ^{7,8}	т	psi	1,010	1,040	1,060	1,080	1,060	D652	
d mb		cr	(MPa)	(7.0)	(7.2)	(7.3)	(7.4)	(7.3)	2.0.0.2	
ranç	Characteristic bond stress in uncracked concrete ^{7,8}	τ	psi	1,300	1,280	1,270	1,250	1,240	D.6.5.2	
		uncr	(MPa)	(9.0)	(8.8)	(8.8)	(8.6)	(8.6)		
۰ m	Characteristic bond stress in cracked concrete ^{7,8}	τ	psi	700	720	730	740	730	D.6.5.2	
ge F		Cr	(MPa)	(4.8)	(5.0)	(5.0)	(5.1)	(5.0)		
ran	Characteristic bond stress in uncracked concrete ^{7,8}	τ	psi	900	890	880	860	850	D.6.5.2	
		uncr	(MPa)	(6.2)	(6.1)	(6.1)	(5.9)	(5.9)		
Anche	or category, water-filled hole	-	-	3	3	3	3	3	D.5.3(c)	
Resis	tance modification factor	R _{wf}	-	0.75	0.75	0.75	0.75	0.75		
	Ui	nderwater a	pplicatic	on 					r	
₽	Characteristic bond stress in cracked concrete ^{7,8}	τ	psi	880	920	940	980	960	D.6.5.2	
ge.		G	(MPa)	(6.1)	(6.3)	(6.5)	(6.8)	(6.6)		
Te ran	Characteristic bond stress in uncracked concrete ^{7,8}	τ	psi	1,130	1,140	1,140	1,140	1,130	D.6.5.2	
		unci	(MPa)	(7.8)	(7.9)	(7.9)	(7.9)	(7.8)		
ے ش	Characteristic bond stress in cracked concrete ^{7,8}	τ	psi	610	630	650	680	660	D.6.5.2	
amp ge		G	(MPa)	(4.2)	(4.3)	(4.5)	(4.7)	(4.6)		
T€	Characteristic bond stress in uncracked concrete7.8	τ	psi	780	/90	/80	/80	/80	D.6.5.2	
A == -1		and	(MPa)	(5.4)	(5.4)	(5.4)	(5.4)	(5.4)		
Anch	or calegory, underwater	-	-	3	3	3	3	3	D.5.3(c)	
Hesis	tance modification factor	K _{uw}	-	0.75	0.75	0.75	0.75	0.75	· · · ·	
Kesis	tance for seismic tension	α _{N,seis}	-	0.90	0.90	0.90	0.90	0.90		

1 Design information in this table is taken from ICC-ES ELC-3814, dated April 2018,, table 23 and 24, and converted for use with CSA A23.3-14 Annex D.

2 See figure 2 of section 3.2.4.3.1.

3 Minimum edge distance may be reduced to 45mm provided rebar remains untorqued. See ESR-3814 section 4.1.9.

4 For all design cases,  $\psi_{c,N} = 1.0$ . The appropriate coefficient for breakout resistance for cracked concrete ( $k_{c,cr}$ ) or uncracked concrete ( $k_{c,urcr}$ ) must be used.

5 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

6 Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are

roughly constant over significant periods of time.

7 Bond stress values corresponding to concrete compressive stress  $f'_c = 2,500$  psi (17.2 MPa). For concrete compressive strength,  $f'_c$ , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond stress may be increased by a factor of ( $f'_c/2,500$ )^{0.25} [for SI: ( $f'_c/17.2$ )^{0.25}] for uncracked concrete and ( $f'_c/2,500$ )^{0.15} [for SI: ( $f'_c/17.2$ )^{0.15}] for cracked concrete.

8 For structures assigned to Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by α_{Nseis}

### Table 55 - Hilti HIT-RE 500 V3 adhesive design information with CA rebar in diamond core drilled holes in accordance with CSA A23.3-14 Annex D¹

Desir		O make al	Linita			Rebar size			Ref
Desig	n parameter	Symbol	Units	10M	15M	20M	25M	30M	A23.3-14
Ancho	or O.D.	d _a	-	11.3	16.0	19.5	25.2	29.9	
Effect	ive minimum embedment ²	h _{ef}	-	60	80	90	101	120	
Effect	ive maximum embedment ²	h _{ef}	-	226	320	390	504	598	
Min. c	oncrete thickness ²	h _{min}	-	h _{ef} + 30		h _{ef} +	2d ₀		
Critica	al edge distance	Cac	-			2h _{ef}			
Minim	um edge distance	C _{min} ³	-	57	80	98	126	150	
Minim	um anchor spacing	S _{min}	-	57	80	98	126	150	
Coeff.	for factored conc. breakout resistance, uncracked concrete	k _{c,uncr} ⁴	-			10			D.6.2.2
Coeff.	for factored conc. breakout resistance, cracked concrete	k_c,cr	-			7			D.6.2.2
Concr	ete material resistance factor	фс	-			0.65			8.4.2
Resist Condi	ance modification factor for tension and shear, concrete failure modes, tion $B^{s}$	R _{conc}	-			1.00			D.5.3(c)
	Dry concre	te and water	saturate	d concrete					
mp. A ⁶	Characteristic bond stress in cracked concrete ^{7,8}	т	psi	1,150	1,150	1,150	1,150	1,150	D652
, Tel Tar		uncr	(MPa)	(7.9)	(7.9)	(7.9)	(7.9)	(7.9)	D.0.0.2
np. ge	Characteristic hand stress in unercolord concrete ⁷⁸	_	psi	800	800	800	800	800	DEED
Ter ran	Characteristic bond stress in uncracked concrete."	uncr	(MPa)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)	0.0.5.2
Ancho	or category, dry concrete	-	-	2	3	3	3	3	D 5 2(a)
Resist	ance modification factor	R _{dry}	-	0.85	0.75	0.75	0.75	0.75	D.5.5(C)

1 Design information in this table is taken from ELC-3814, dated April 2018, table 23 and 25B, and converted for use with CSA A23.3-14 Annex D.

2 See figure 2 of section 3.2.4.3.1.

3 Minimum edge distance may be reduced to 45mm provided rebar remains untorqued. See ESR-3814 section 4.1.9.

4 For all design cases,  $\Psi_{c,N} = 1.0$ . The appropriate coefficient for breakout resistance for cracked concrete ( $k_{c,cr}$ ) or uncracked concrete ( $k_{c,unc}$ ) must be used. 5 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

6 Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

7 Bond stress values correspond to concrete compressive strength  $f_c^1 = 2,500 \text{ psi}$  (17.2 MPa). For concrete compressive strength,  $f_c^1$ , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond stress may be increased by a factor of  $(f_c^1/2,500)^{0.25}$  [for SI:  $(f_c^1/17.2)^{0.25}$ ] for uncracked concrete.



### Table 56 - Hilti HIT-RE 500 V3 adhesive factored resistance with concrete/bond failure for CA rebar

#### in uncracked concrete1,2,3,4,5,6,7,8,9,10,11

			Tensi	on N _r			She	ar V _r	
Rebar size	Effective embedment in. (mm)	f′ _c = 20 MPa (2,900 psi) Ib (kN)	f´ _c = 25 MPa (3,625 psi) Ib (kN)	f´ _c = 30 MPa (4,350 psi) Ib (kN)	f´ _c = 40 MPa (5,800 psi) Ib (kN)	f´ _c = 20 MPa (2,900 psi) Ib (kN)	f´ _c = 25 MPa (3,625 psi) Ib (kN)	f´ _c = 30 MPa (4,350 psi) Ib (kN)	f´ _c = 40 MPa (5,800 psi) Ib (kN)
	4-1/2	7,520	7,950	8,320	8,940	15,040	15,900	16,645	17,885
	(115)	(33.4)	(35.4)	(37.0)	(39.8)	(66.9)	(70.7)	(74.0)	(79.6)
10M	7-1/16	11,770	12,445	13,025	13,995	23,540	24,890	26,050	27,990
10101	(180)	(52.4)	(55.4)	(57.9)	(62.3)	(104.7)	(110.7)	(115.9)	(124.5)
	8-7/8	14,775	15,625	16,355	17,575	29,555	31,250	32,705	35,145
	(226)	(65.7)	(69.5)	(72.7)	(78.2)	(131.5)	(139.0)	(145.5)	(156.3)
	5-11/16	11,410	12,755	13,975	15,600	22,820	25,515	27,950	31,205
	(145)	(50.8)	(56.7)	(62.2)	(69.4)	(101.5)	(113.5)	(124.3)	(138.8)
15M10	9-13/16	22,620	23,915	25,030	26,900	45,240	47,835	50,065	53,800
10101	(250)	(100.6)	(106.4)	(111.3)	(119.7)	(201.2)	(212.8)	(222.7)	(239.3)
	12-5/8	28,950	30,615	32,040	34,430	57,905	61,225	64,080	68,860
	(320)	(128.8)	(136.2)	(142.5)	(153.2)	(257.6)	(272.3)	(285.1)	(306.3)
	7-7/8	18,485	20,665	22,640	25,770	36,965	41,330	45,275	51,540
	(200)	(82.2)	(91.9)	(100.7)	(114.6)	(164.4)	(183.8)	(201.4)	(229.3)
201/10	14	38,460	40,670	42,565	45,740	76,925	81,340	85,130	91,480
20101	(355)	(171.1)	(180.9)	(189.3)	(203.5)	(342.2)	(361.8)	(378.7)	(406.9)
	15-3/8	42,255	44,680	46,760	50,250	84,510	89,355	93,525	100,500
	(390)	(188.0)	(198.7)	(208.0)	(223.5)	(375.9)	(397.5)	(416.0)	(447.0)
	9-1/16	22,795	25,485	27,920	32,235	45,590	50,970	55,835	64,475
	(230)	(101.4)	(113.4)	(124.2)	(143.4)	(202.8)	(226.7)	(248.4)	(286.8)
25M	15-15/16	53,265	58,540	61,270	65,840	106,525	117,080	122,540	131,680
20101	(405)	(236.9)	(260.4)	(272.5)	(292.9)	(473.9)	(520.8)	(545.1)	(585.7)
	19-13/16	68,895	72,850	76,245	81,935	137,795	145,700	152,495	163,865
	(504)	(306.5)	(324.1)	(339.2)	(364.5)	(612.9)	(648.1)	(678.3)	(728.9)
	10-1/4	27,395	30,630	33,555	38,745	54,795	61,260	67,110	77,490
	(260)	(121.9)	(136.3)	(149.3)	(172.3)	(243.7)	(272.5)	(298.5)	(344.7)
30M	17-15/16	63,425	70,910	77,680	85,635	126,850	141,825	155,360	171,270
00101	(455)	(282.1)	(315.4)	(345.5)	(380.9)	(564.3)	(630.9)	(691.1)	(761.8)
	23-9/16	94,640	100,070	104,740	112,550	189,285	200,145	209,475	225,100
	(598)	(421.0)	(445.1)	(465.9)	(500.6)	(842.0)	(890.3)	(931.8)	(1001.3)

*

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 61-70 as necessary to the above values. Compare to the steel values in table 53. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete and water-saturated concrete conditions. For water-filled drilled holes multiply design strength by 0.51.

For submerged (under water) applications multiply design strength by 0.45.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda_a$  as follows:

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ . 9 Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. For diamond core drilling, except as indicated in note 10, multiply above

values by 0.48. Diamond core drilling is not permitted for the water-filled or under-water (submerged) applications.

Diamond core drilling is not permitted for the water-filled or under-water (submerged) applications.

10 Diamond core drilling with Hilti TE-YRT roughening tool is permitted for 15M and 20M diameter anchors for dry and water-saturated concrete conditions. See Table 59.

11 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

### Table 57 - Hilti HIT-RE 500 V3 adhesive factored resistance with concrete/bond failure for CA rebar in cracked concrete^{1,2,3,4,5,6,7,8,9,10}

			Tensi	on N _r			She	ar V _r	
Rebar size	Effective embedment in. (mm)	f´ _c = 20 MPa (2,900 psi) Ib (kN)	f´ _c = 25 MPa (3,625 psi) Ib (kN)	f´ _c = 30 MPa (4,350 psi) Ib (kN)	f´ _c = 40 MPa (5,800 psi) Ib (kN)	f´ _c = 20 MPa (2,900 psi) Ib (kN)	f´ _c = 25 MPa (3,625 psi) Ib (kN)	f´ _c = 30 MPa (4,350 psi) Ib (kN)	f' _c = 40 MPa (5,800 psi) Ib (kN)
	4-1/2	5,640	5,920	6,080	6,350	11,285	11,835	12,165	12,700
	(115)	(25.1)	(26.3)	(27.1)	(28.2)	(50.2)	(52.7)	(54.1)	(56.5)
1014	7-1/16	8,960	9,265	9,520	9,940	17,915	18,525	19,040	19,880
TOM	(180)	(39.8)	(41.2)	(42.3)	(44.2)	(79.7)	(82.4)	(84.7)	(88.4)
	8-7/8	11,250	11,630	11,955	12,480	22,495	23,260	23,905	24,960
	(226)	(50.0)	(51.7)	(53.2)	(55.5)	(100.1)	(103.5)	(106.3)	(111.0)
	5-11/16	7,985	8,930	9,780	11,295	15,975	17,860	19,565	22,590
	(145)	(35.5)	(39.7)	(43.5)	(50.2)	(71.1)	(79.4)	(87.0)	(100.5)
1 = 1 410	9-13/16	18,005	18,620	19,135	19,980	36,010	37,235	38,270	39,955
15101-5	(250)	(80.1)	(82.8)	(85.1)	(88.9)	(160.2)	(165.6)	(170.2)	(177.7)
	12-5/8	23,045	23,830	24,495	25,575	46,095	47,665	48,985	51,145
	(320)	(102.5)	(106.0)	(108.9)	(113.8)	(205.0)	(212.0)	(217.9)	(227.5)
	7-7/8	12,940	14,465	15,845	18,300	25,875	28,930	31,695	36,595
	(200)	(57.6)	(64.3)	(70.5)	(81.4)	(115.1)	(128.7)	(141.0)	(162.8)
201410	14	30,595	32,685	33,590	35,075	61,195	65,370	67,185	70,145
2010113	(355)	(136.1)	(145.4)	(149.4)	(156.0)	(272.2)	(290.8)	(298.8)	(312.0)
	15-3/8	34,725	35,910	36,905	38,530	69,450	71,815	73,805	77,060
	(390)	(154.5)	(159.7)	(164.2)	(171.4)	(308.9)	(319.5)	(328.3)	(342.8)
	9-1/16	15,955	17,840	19,540	22,565	31,915	35,680	39,085	45,130
	(230)	(71.0)	(79.4)	(86.9)	(100.4)	(142.0)	(158.7)	(173.9)	(200.8)
25M	15-15/16	37,285	41,685	45,665	52,075	74,570	83,370	91,325	104,150
20101	(405)	(165.8)	(185.4)	(203.1)	(231.6)	(331.7)	(370.8)	(406.2)	(463.3)
	19-13/16	51,760	57,870	62,070	64,805	103,520	115,735	124,135	129,610
	(504)	(230.2)	(257.4)	(276.1)	(288.3)	(460.5)	(514.8)	(552.2)	(576.5)
	10-1/4	19,180	21,440	23,490	27,120	38,355	42,885	46,975	54,245
	(260)	(85.3)	(95.4)	(104.5)	(120.6)	(170.6)	(190.8)	(209.0)	(241.3)
2014	17-15/16	44,400	49,640	54,375	62,790	88,795	99,275	108,750	125,575
JUIVI	(455)	(197.5)	(220.8)	(241.9)	(279.3)	(395.0)	(441.6)	(483.7)	(558.6)
	23-9/16	66,895	74,790	81,930	88,665	133,790	149,580	163,860	177,325
	(598)	(297.6)	(332.7)	(364.4)	(394.4)	(595.1)	(665.4)	(728.9)	(788.8)

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 61-70 as necessary to the above values. Compare to the steel values in table 53. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete and water-saturated concrete conditions. For water-filled drilled holes multiply design strength by 0.51.

For submerged (under water) applications multiply design strength by 0.45.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda_a$  as follows:

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ .

9 Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. Diamond core drilling is not permitted in cracked concrete conditions except as indicated in note 10.

10 Diamond core drilling with Hilti TE-YRT roughening tool is permitted for 15M and 20M diameter anchors for dry and water-saturated concrete conditions. See Table 60.

11 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values by  $\alpha_{seis}$  = 0.68. See section 3.1.8 for additional information on seismic applications.



### Table 58 - Hilti HIT-RE 500 V3 adhesive design information with CA rebar in core drilled holes roughened with the TE-YRT Roughening Tool in accordance with CSA A23.3-14 Annex D^{1,9}

Desis		O: male al	Linita	Reba	ır size	Ref
Desig	n parameter	Symbol	Units	15M	20M	A23.3-14
Anch	or O.D.	d _a	-	16.0	19.5	
Effect	tive minimum embedment ²	h _{ef}	-	80	90	
Effect	tive maximum embedment ²	h _{ef}	-	320	390	
Min.	concrete thickness ²	h _{min}	-	21	h _{ef}	
Critic	al edge distance	C _{ac}	-	h _{ef} +	- 2d ₀	
Minim	num edge distance	C _{min} ³	-	80	98	
Minim	num anchor spacing	S _{min}	-	80	98	
Coeff	. for factored conc. breakout resistance, uncracked concrete	k _{c,uncr} ⁴	-	1	0	D.6.2.2
Coeff	. for factored conc. breakout resistance, cracked concrete	k_c,cr ⁴	-	-	7	D.6.2.2
Conc	rete material resistance factor	фс	-	0.	65	8.4.2
Resis Cond	tance modification factor for tension and shear, concrete failure modes, ition B ⁵	R _{conc}	-	1.	00	D.5.3 (c )
	Dry concrete and water	saturated concr	ete			
	Characteristic hand stress in grad/ad constate ⁶⁷	-	psi	970	985	DEE2
np. A		cr	(MPa)	(6.7)	(6.8)	D.0.5.2
Ter ang	Characteristic hand stress in unercalled congrate ⁶⁷	-	psi	1,720	1,690	DEE2
-		uncr	(MPa)	(11.9)	(11.7)	D.0.3.2
	Characteristic band stress in stresked constrate ⁶⁷	-	psi	670	680	
e B.		cr	(MPa)	(4.6)	(4.7)	D.0.3.2
Ter ang	Characteristic hand stress in unercalled congrate ⁶⁷	-	psi	1,190	1,170	DEE2
-		uncr	(MPa)	(8.2)	(8.1)	D.0.3.2
Anch	or category, dry concrete	-	-	1	1	

- 🔶 -

1 Design information in this table is taken from ICC-ES ELC-3814, dated April 2018, table 23 and 25A, and converted for use with CSA A23.3-14 Annex D.

2 See figure 2 of section 3.2.4.3.4.

Resistance modification factor

Reduction for Seismic Tension

For all design cases, ψc,N = 1.0. The appropriate coefficient for breakout resistance for cracked concrete (kc,cr) or uncracked concrete (kc,uncr) must be used.
 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

R_{dry}

α,

1.00

0.90

-

1.00

0.90

D.5.3(c)

6 Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

7 Bond stress values correspond to concrete compressive strength in the range 2,500 psi ≤ f'c ≤ 8,000 psi.

8 For structures assigned to Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by  $\alpha_{_{\rm N \, SHS}}$ .

³ Minimum edge distance may be reduced to 45mm provided rebar remains untorqued. See ESR-3814 section 4.1.9.

### Table 59 - Hilti HIT-RE 500 V3 adhesive factored resistance for core drilled holes roughened with Hilti TE-YRT roughening tool with concrete / bond failure for CA rebar in uncracked concrete^{1,2,3,4,5,6,7,8,9}

			Tensio	on - N _r			Shea	ar - V _r	
Rebar size	Effective embedment in. (mm)	f' = 20 MPa (2,900psi) Ib (kN)	f' = 25 MPa (3,625 psi) Ib (kN)	f' = 30 MPa (4,350 psi) Ib (kN)	f' = 40 MPa (5,800 psi) Ib (kN)	f' = 20 MPa (2,900 psi) Ib (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) Ib (kN)	f' = 40 MPa (5,800 psi) Ib (kN)
	5-11/16	11,410	12,635	12,635	12,635	22,820	25,265	25,265	25,265
	(145)	(50.8)	(56.2)	(56.2)	(56.2)	(101.5)	(112.4)	(112.4)	(112.4)
1514	9-13/16	21,780	21,780	21,780	21,780	43,565	43,565	43,565	43,565
1 JIVI	(250)	(96.9)	(96.9)	(96.9)	(96.9)	(193.8)	(193.8)	(193.8)	(193.8)
	12-5/8	27,880	27,880	27,880	27,880	55,760	55,760	55,760	55,760
	(320)	(124.0)	(124.0)	(124.0)	(124.0)	(248.0)	(248.0)	(248.0)	(248.0)
	7-7/8	18,485	20,665	20,865	20,865	36,965	41,330	41,735	41,735
	(200)	(82.2)	(91.9)	(92.8)	(92.8)	(164.4)	(183.8)	(185.6)	(185.6)
2014	14	37,040	37,040	37,040	37,040	74,080	74,080	74,080	74,080
ZUIVI	(355)	(164.8)	(164.8)	(164.8)	(164.8)	(329.5)	(329.5)	(329.5)	(329.5)
	15-3/8	40,690	40,690	40,690	40,690	81,380	81,380	81,380	81,380
	(390)	(181.0)	(181.0)	(181.0)	(181.0)	(362.0)	(362.0)	(362.0)	(362.0)

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 61-70 as necessary to the above values. Compare to the steel values in table 53. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete or water-saturated concrete conditions. Water-filled and submerged (under water) applications are not permitted for this hole preparation method.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda a$  as follows: For sand-lightweight,  $\lambda a = 0.51$ . For all lightweight,  $\lambda a = 0.45$ .

9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

### Table 60 - Hilti HIT-RE 500 V3 adhesive factored resistance for core drilled holes roughened with Hilti TE-YRT roughening tool with concrete / bond failure for CA rebar in cracked concrete^{1,2,3,4,5,6,7,8,9}

			Tensio	on - N _r			Shea	ar - V _r	
Rebar size	Effective embedment in. (mm)	f'	f' = 25 MPa (3,625 psi) Ib (kN)	f'	f' = 40 MPa (5,800 psi) Ib (kN)	f'	f' = 25 MPa (3,625 psi) Ib (kN)	f' _c = 30 MPa (4,350 psi) Ib (kN)	f' = 40 MPa (5,800 psi) Ib (kN)
	5-11/16	7,125	7,125	7,125	7,125	14,250	14,250	14,250	14,250
	(145)	(31.7)	(31.7)	(31.7)	(31.7)	(63.4)	(63.4)	(63.4)	(63.4)
1514	9-13/16	12,285	12,285	12,285	12,285	24,570	24,570	24,570	24,570
1.0101	(250)	(54.6)	(54.6)	(54.6)	(54.6)	(109.3)	(109.3)	(109.3)	(109.3)
	12-5/8	15,725	15,725	15,725	15,725	31,445	31,445	31,445	31,445
	(320)	(69.9)	(69.9)	(69.9)	(69.9)	(139.9)	(139.9)	(139.9)	(139.9)
	7-7/8	12,160	12,160	12,160	12,160	24,325	24,325	24,325	24,325
	(200)	(54.1)	(54.1)	(54.1)	(54.1)	(108.2)	(108.2)	(108.2)	(108.2)
2014	14	21,590	21,590	21,590	21,590	43,175	43,175	43,175	43,175
20101	(355)	(96.0)	(96.0)	(96.0)	(96.0)	(192.1)	(192.1)	(192.1)	(192.1)
	15-3/8	23,715	23,715	23,715	23,715	47,435	47,435	47,435	47,435
	(390)	(105.5)	(105.5)	(105.5)	(105.5)	(211.0)	(211.0)	(211.0)	(211.0)

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 61-70 as necessary to the above values. Compare to the steel values in table 53. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete or water-saturated concrete conditions. Water-filled and submerged (under water) applications are not permitted for this hole preparation method.

Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda a$  as follows: For sand-lightweight,  $\lambda a = 0.51$ . For all-lightweight,  $\lambda a = 0.45$ .

9 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values by  $\alpha_{seis} = 0.675$ . See section 3.1.8 for additional information on seismic applications.

3.2.3



#### Edge distance in shear Edge distance factor 10M Spacing factor Spacing factor To and away Concrete thickness Toward edge uncracked in tension in tension in shear4 from edge factor in shear concrete $f_{AN}$ $f_{\rm RV}$ f _{RN} f_{RV} Ĵ_{AV} †_{нv} Embedment h. 4-1/2 7-1/16 8-7/8 4 - 1/27-1/16 8-7/8 4 - 1/27-1/16 8-8/9 4 - 1/27-1/16 8-7/8 4-1/2 7-1/16 8-7/8 4 - 1/27-1/16 8-7/8 (180)(226)(115)(180)(226)(180)(115)(180)(226)(115)(180) (226)(115)(180)(226)in. (mm) (115)(115)(226)0.04 1 - 3/40.24 0.06 0.03 0.06 (44) n/a n/a n/a 0.15 0.12 n/a n/a n/a 0.11 0.07 n/a n/a n/a (mm) 0.08 2-3/16 (55)0.58 0.55 0.54 0.26 0.16 0.13 0.53 0.52 0.52 0.05 0.04 0.15 0.10 0.08 n/a n/a n/a .<u>:</u> 3 (76)0.61 0.57 0.56 0.30 0.19 0.15 0.54 0.53 0.53 0.12 0.08 0.06 0.25 0.16 0.13 n/a n/a n/a 4 (102)0.65 0.59 0.57 0.35 0.22 0.17 0.56 0.54 0.54 0.19 0.12 0.10 0.35 0.22 0.17 n/a n/a n/a Ê 5 (127)0.68 0.62 0.59 0.41 0.25 0.20 0.57 0.55 0.54 0.27 0.17 0.14 0.41 0.25 0.20 n/a n/a n/a thickness 0.17 5-11/16 (145) 0.56 0.33 0.45 0.22 0.71 0.63 0.61 0.45 0.28 0.22 0.58 0.55 0.21 0.28 0.56 n/a n/a (152) 0.72 0.64 0.61 0.47 0.29 0.23 0.58 0.56 0.55 0.35 0.22 0.18 0.47 0.29 0.23 0.58 6 n/a n/a 7 (178) 0.76 0.66 0.63 0.54 0.34 0.27 0.60 0.57 0.56 0.44 0.28 0.23 0.54 0.34 0.27 0.62 n/a n/a concrete (203) 0.28 0.38 8 0.79 0.69 0.65 0.62 0.38 0.30 0.61 0.58 0.57 0.54 0.35 0.62 0.30 0.67 n/a n/a 8-1/4 (210) 0.80 0.69 0.65 0.64 0.40 0.31 0.61 0.58 0.57 0.57 0.36 0.29 0.64 0.40 0.31 0.68 0.58 n/a 0.70 0.65 0.33 0.70 0.43 0.71 9 (229)0.83 0.71 0.67 0.43 0.34 0.62 0.59 0.58 0.41 0.34 0.61 n/a (c²)/0 10-1/16 0.78 0.48 0.38 0.64 0.60 0.59 0.76 0.49 0.39 0.48 0.38 0.75 (256)0.87 0.74 0.69 0.78 0.64 0.60 distance 11 (279) 0.90 0.76 0.71 0.85 0.53 0.42 0.65 0.61 0.60 0.87 0.56 0.44 0.85 0.53 0.42 0.78 0.67 0.62 12 (305) 0.94 0.78 0.72 0.93 0.58 0.45 0.67 0.62 0.61 0.99 0.63 0.51 0.93 0.58 0.45 0.81 0.70 0.65 1.00 1.00 14 (356) 1.00 0.83 0.76 0.67 0.53 0.69 0.64 0.62 0.80 0.64 1.00 0.67 0.53 0.88 0.76 0.70 edge 16 (406) 0.88 0.80 0.77 0.61 0.72 0.66 0.64 0.98 0.78 0.77 0.61 0.94 0.81 0.75 0.87 0.68 0.68 0.93 0.68 1.00 0.86 18 (457) 0.92 0.84 0.75 0.66 1.00 0.87 0.80 (s) 24 (610) 0.95 0.83 0.75 0.71 1.00 0.91 0.92 1.00 1.00 0.91 1.00 0.99 Spacing 30 (762) 1.00 1.00 0.91 0.81 0.76 1.00 1.00 1.00 36 (914)1.00 0.87 0.82 (1219) > 48 0.99 0.92

*

-

#### Table 61 - Load adjustment factors for 10M rebar in uncracked concrete^{1,2,3}

#### Table 62 - Load adjustment factors for 10M rebar in cracked concrete^{1,2,3}

Edge distance in shear 10M Spacing factor Edge distance factor Spacing factor Concrete thickness To and away _ cracked in tension in tension in shear Toward edge from edge factor in shear concrete t 🗛 Ĵ ΒΝ Ĵ 🔊 t ⊾ f ... Jы Embedment h 4-1/2 7-1/16 8-7/8 4-1/2 7-1/16 8-7/8 4-1/2 7-1/16 8-8/9 4-1/2 7-1/16 8-7/8 4-1/2 7-1/16 8-7/8 4-1/2 7-1/16 8-7/8 (180) (226) (115) (180) (226) (180) (180) (226) (115)(180) (226) (mm) (115)(115)(226) (115)(115)(180)(226)in. 0.49 0.44 0.42 0.05 0.03 0.03 0.10 0.07 0.05 1 - 3/4(44)n/a n/a n/a n/a n/a n/a n/a n/a n/a (mm) 2-3/16 (55) 0.58 0.55 0.54 0.52 0.46 0.43 0.53 0.52 0.52 0.07 0.04 0.04 0.14 0.09 0.07 n/a n/a n/a 0.61 0.57 0.56 0.60 0.50 0.47 0.54 0.53 0.53 0.11 0.07 0.06 0.23 0.15 0.12 .⊆ 3 (76) n/a n/a n/a 4 (102) 0.65 0.59 0.57 0.70 0.56 0.51 0.55 0.54 0.53 0.18 0.11 0.09 0.35 0.23 0.18 n/a n/a n/a Ĵ, 5 (127) 0.68 0.62 0.59 0.80 0.62 0.56 0.57 0.55 0.54 0.25 0.16 0.13 0.49 0.32 0.25 n/a n/a n/a thickness 5-11/16 (145)0.71 0.63 0.61 0.88 0.66 0.59 0.57 0.56 0.55 0.30 0.19 0.15 0.60 0.39 0.31 0.55 n/a n/a 6 (152) 0.72 0.64 0.61 0.91 0.68 0.61 0.58 0.56 0.55 0.32 0.21 0.17 0.65 0.41 0.33 0.56 n/a n/a 0.59 0.57 0.21 0.61 7 (178) 0.76 0.66 0.63 1.00 0.74 0.65 0.56 0.41 0.26 0.82 0.52 0.42 n/a n/a ' concrete 8 (203) 0.79 0.69 0.65 0.81 0.70 0.60 0.58 0.57 0.50 0.32 0.25 1.00 0.64 0.51 0.65 n/a n/a 8-1/4 (210)0.80 0.69 0.65 0.83 0.72 0.61 0.58 0.57 0.53 0.34 0.27 0.67 0.53 0.66 0.57 n/a (229) 0.88 0.38 0.30 9 0.83 0.71 0.67 0.76 0.62 0.59 0.58 0.60 0.76 0.61 0.69 0.59 n/a (°)/ 10-1/16 (256) 0.87 0.74 0.69 0.96 0.81 0.63 0.60 0.58 0.71 0.45 0.36 0.90 0.72 0.73 0.63 0.58 distance 11 (279) 0.90 0.76 0.71 1.00 0.86 0.64 0.61 0.59 0.81 0.51 0.41 1.00 0.82 0.76 0.65 0.61 12 0.92 0.66 0.62 0.60 0.92 0.59 0.47 0.79 0.63 (305)0.94 0.78 0.72 0.92 0.68 0.74 14 (356) 1.00 0.83 0.76 1.00 0.68 0.64 0.62 1.00 0.59 1.00 0.86 0.74 0.68 (s) / edge 16 (406) 0.88 0.80 0.71 0.66 0.63 0.90 0.72 0.92 0.79 0.73 18 (457) 0.92 0.84 0.68 0.65 1.00 0.86 0.97 0.84 0.78 0.74 24 (610) 1.00 0.95 0.81 0.73 0.70 1.00 1.00 0.97 0.90 Spacing 30 1.00 0.89 0.79 1.00 1.00 (762)0.75 0.97 0.85 0.80 36 (914)> 48 (1219)1.00 0.97 0.90

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.

4 Spacing factor reduction in shear applicable when  $c < 3^{*}h_{ef}$ ,  $f_{AV}$  is applicable when edge distance,  $c < 3^{*}h_{ef}$ . If  $c \ge 3^{*}h_{ef}$ , then  $f_{AV} = f_{AN}$ .

5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{HV} = 1.0^{\circ}$ .

Anchor Fastening Technical Guide Edition 19 | 3.0 ANCHORING SYSTEMS | 3.2.3 HIT-RE 500 V3 EPOXY ADHESIVE ANCHORING SYSTEM Hilti, Inc. (U.S.) 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.com | 1-800-363-4458

*

3.2.3

*

													Edg	je distar	nce in sh	iear				
ι	15M Incracke	ed	Spa ii	acing fac n tensior	n n	Edge o ii	distance n tensior	factor	Spa i	acing fac in shear	tor	То	⊥ ward ed	ge	∥ Ta fi	o and av	vay e	Conci fact	rete thick tor in she	kness ear⁵
	concret	e		J _{AN}			J _{RN}			J _{AV}			J _{RV}			J _{RV}			J _{HV}	
Em	bedmen	nt h _{ef}	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8
	in.	(mm)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)
Ê	1-3/4	(44)	n/a	n/a	n/a	0.24	0.14	0.11	n/a	n/a	n/a	0.04	0.02	0.02	0.08	0.04	0.03	n/a	n/a	n/a
Ľ,	3-1/8	(80)	0.59	0.55	0.54	0.29	0.17	0.13	0.54	0.52	0.52	0.10	0.05	0.04	0.20	0.11	0.08	n/a	n/a	n/a
.⊑	4	(102)	0.61	0.57	0.55	0.33	0.19	0.14	0.55	0.53	0.53	0.14	0.08	0.06	0.29	0.15	0.12	n/a	n/a	n/a
; -	5	(127)	0.64	0.58	0.57	0.37	0.21	0.16	0.56	0.54	0.53	0.20	0.11	0.08	0.37	0.21	0.16	n/a	n/a	n/a
s (h	6	(152)	0.67	0.60	0.58	0.41	0.23	0.18	0.57	0.54	0.54	0.27	0.14	0.11	0.41	0.23	0.18	n/a	n/a	n/a
les	7	(178)	0.70	0.62	0.59	0.46	0.26	0.20	0.58	0.55	0.54	0.33	0.18	0.14	0.46	0.26	0.20	n/a	n/a	n/a
ickr	7-1/4	(184)	0.71	0.62	0.60	0.47	0.26	0.20	0.58	0.55	0.55	0.35	0.18	0.14	0.47	0.26	0.20	0.58	n/a	n/a
ţ,	8	(203)	0.73	0.64	0.61	0.50	0.28	0.22	0.59	0.56	0.55	0.41	0.21	0.17	0.50	0.28	0.22	0.61	n/a	n/a
rete	9	(229)	0.76	0.65	0.62	0.56	0.31	0.24	0.60	0.57	0.56	0.49	0.26	0.20	0.56	0.31	0.24	0.64	n/a	n/a
onc	10	(254)	0.78	0.67	0.63	0.62	0.35	0.27	0.61	0.57	0.56	0.57	0.30	0.23	0.62	0.35	0.27	0.68	n/a	n/a
Š	11-3/8	(289)	0.82	0.69	0.65	0.71	0.40	0.31	0.63	0.58	0.57	0.69	0.36	0.28	0.71	0.40	0.31	0.72	0.58	n/a
(c ^a	12	(305)	0.84	0.70	0.66	0.74	0.42	0.32	0.64	0.59	0.58	0.75	0.39	0.31	0.74	0.42	0.32	0.74	0.60	n/a
ee (	14-1/8	(359)	0.90	0.74	0.69	0.88	0.49	0.38	0.66	0.61	0.59	0.96	0.50	0.39	0.88	0.49	0.38	0.81	0.65	0.60
tan	16	(406)	0.96	0.77	0.71	0.99	0.56	0.43	0.68	0.62	0.60	1.00	0.61	0.47	0.99	0.56	0.43	0.86	0.69	0.64
dis	18	(457)	1.00	0.80	0.74	1.00	0.63	0.48	0.71	0.63	0.61		0.72	0.56	1.00	0.63	0.48	0.91	0.73	0.67
ige	20	(508)		0.84	0.76		0.70	0.54	0.73	0.65	0.63		0.85	0.66		0.70	0.54	0.96	0.77	0.71
90	22	(559)		0.87	0.79		0.77	0.59	0.75	0.66	0.64		0.98	0.76		0.77	0.59	1.00	0.81	0.75
(s)	24	(610)		0.91	0.82		0.83	0.65	0.78	0.68	0.65		1.00	0.87		0.83	0.65		0.85	0.78
ng	30	(762)		1.00	0.90		1.00	0.81	0.84	0.72	0.69			1.00		1.00	0.81		0.95	0.87
Daci	36	(914)			0.98			0.97	0.91	0.77	0.73						0.97		1.00	0.95
ম	> 48	(1219)			1.00			1.00	1.00	0.86	0.80						1.00			1.00

#### Table 63 - Load adjustment factors for 15M rebar in uncracked concrete^{1,2,3}

Table 64 - Load adjustment factors for 15M rebar in cracked concrete^{1,2,3}

												Edg	e dista	nce in sh	near					
	15M cracked concret	d e	Spa ii	acing fac n tension $f_{\rm AN}$	ctor n	Edge o ii	distance n tensior $f_{_{\rm RN}}$	factor	Spa	acing fac in shear $f_{AV}$	tor	To	ward ed $f_{\rm RV}$	ge	∥ Tr fi	o and av rom edg $f_{_{\rm RV}}$	vay e	Concr fact	rete thick or in she $f_{\rm HV}$	kness ear⁵
E	mbedmen	nt h _{ef}	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8
	in.	(mm)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)
Ê	1-3/4	(44)	n/a	n/a	n/a	0.46	0.41	0.40	n/a	n/a	n/a	0.04	0.02	0.02	0.09	0.04	0.03	n/a	n/a	n/a
L L	3-1/8	(80)	0.59	0.55	0.54	0.55	0.46	0.44	0.54	0.52	0.52	0.10	0.05	0.04	0.21	0.09	0.07	n/a	n/a	n/a
. <u>-</u> .	4	(102)	0.61	0.57	0.55	0.61	0.50	0.46	0.55	0.53	0.52	0.15	0.07	0.05	0.29	0.13	0.10	n/a	n/a	n/a
; ;	5	(127)	0.64	0.58	0.57	0.68	0.54	0.49	0.56	0.53	0.53	0.21	0.09	0.07	0.41	0.19	0.15	n/a	n/a	n/a
S (L	6	(152)	0.67	0.60	0.58	0.76	0.58	0.52	0.57	0.54	0.53	0.27	0.12	0.10	0.54	0.25	0.19	n/a	n/a	n/a
nes	7	(178)	0.70	0.62	0.59	0.84	0.62	0.56	0.58	0.55	0.54	0.34	0.15	0.12	0.68	0.31	0.24	n/a	n/a	n/a
Š	7-1/4	(184)	0.71	0.62	0.60	0.86	0.63	0.56	0.58	0.55	0.54	0.36	0.16	0.13	0.72	0.33	0.25	0.58	n/a	n/a
e t	8	(203)	0.73	0.64	0.61	0.93	0.66	0.59	0.59	0.55	0.55	0.42	0.19	0.15	0.83	0.38	0.30	0.61	n/a	n/a
cret	9	(229)	0.76	0.65	0.62	1.00	0.71	0.62	0.60	0.56	0.55	0.50	0.23	0.18	0.99	0.45	0.35	0.65	n/a	n/a
ouo	10	(254)	0.78	0.67	0.63		0.76	0.66	0.62	0.57	0.56	0.58	0.26	0.21	1.00	0.53	0.41	0.68	n/a	n/a
~	11-3/8	(289)	0.82	0.69	0.65		0.82	0.71	0.63	0.58	0.57	0.71	0.32	0.25		0.64	0.50	0.73	0.56	n/a
$(c_a)$	12	(305)	0.84	0.70	0.66		0.86	0.73	0.64	0.58	0.57	0.77	0.35	0.27		0.69	0.54	0.75	0.57	n/a
e	14-1/8	(359)	0.90	0.74	0.69		0.97	0.81	0.66	0.60	0.58	0.98	0.44	0.35		0.89	0.69	0.81	0.62	0.57
star	16	(406)	0.96	0.77	0.71		1.00	0.88	0.69	0.61	0.59	1.00	0.53	0.42		1.00	0.84	0.86	0.66	0.61
di	18	(457)	1.00	0.80	0.74			0.96	0.71	0.62	0.60		0.64	0.50			0.96	0.91	0.70	0.65
dge	20	(508)		0.84	0.76			1.00	0.73	0.64	0.62		0.75	0.58			1.00	0.96	0.74	0.68
) e	22	(559)		0.87	0.79				0.76	0.65	0.63		0.86	0.67				1.00	0.78	0.72
(s)	24	(610)		0.91	0.82				0.78	0.66	0.64		0.98	0.77					0.81	0.75
Sing	30	(762)		1.00	0.90				0.85	0.71	0.67		1.00	1.00					0.91	0.84
pac	36	(914)			0.98				0.92	0.75	0.71								0.99	0.92
S	> 48	(1219)			1.00				1.00	0.83	0.78								1.00	1.00

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{er}$ ,  $f_{_{AV}}$  is applicable when edge distance,  $c < 3^*h_{er}$ . If  $c \ge 3^*h_{er}$ , then  $f_{_{AV}} = f_{_{AN}}$ . 5 Concrete thickness reduction factor in shear,  $f_{_{HV}}$  is applicable when edge distance,  $c < 3^*h_{er}$ . If  $c \ge 3^*h_{er}$ , then  $f_{_{HV}} = 1.0$ .

153



											Edę	ge distar	ice in sh	iear						
	20M uncrack concret	ed	Spa ii	acing fa n tensio f	ctor n	Edge o ii	distance n tensio f	e factor n	Spa i	acing fao n shear f	ctor 4	To	ward ec	lge	∥ To fr	o and av om edg	way Ie	Conci fact	rete thic or in sh	kness ear⁵
			7 7 /0	J AN	15 0/0	7 7 /0	7 RN	15 0/0	7 7 /0	J AV	15 0/0	77/0	J RV	15 0/0	7 7 /0	J RV	15 0/0	7 7 /0	J HV	15 0/0
E	inneamer	IL II _{ef}	(200)	(255)	(200)	(200)	(255)	15-3/6	(200)	14	(200)	(200)	(255)	10-3/0	(200)	(255)	10-3/0	(200)	(255)	(200)
1	1.2/4	(1111)	(200)	(355)	(390)	(200)	0.11	(390)	(200)	(300)	(390)	(200)	(355)	(390)	(200)	(300)	(390)	(200)	(300)	(390)
Ê	2 7/9	(44)	11/a	0.55	11/a	0.21	0.11	0.10	11/a	11/a	11/a	0.03	0.01	0.01	0.00	0.03	0.02	n/a	n/a	n/a
Ē	3-1/0	(90)	0.50	0.55	0.54	0.20	0.14	0.13	0.53	0.52	0.52	0.09	0.04	0.04	0.10	0.09	0.00	n/a	n/a	n/a
. <u>-</u>	5	(102)	0.50	0.55	0.54	0.27	0.15	0.15	0.55	0.52	0.52	0.10	0.03	0.04	0.13	0.09	0.09	n/a	n/a	n/a
; (	6	(127)	0.01	0.50	0.55	0.30	0.10	0.15	0.54	0.53	0.53	0.13	0.07	0.00	0.27	0.13	0.12	n/a	n/a	n/a
s (L	7	(172)	0.05	0.57	0.57	0.35	0.10	0.10	0.55	0.53	0.55	0.17	0.09	0.00	0.35	0.17	0.10	n/a	n/a	n/a
ues	7 Q	(203)	0.05	0.50	0.50	0.30	0.13	0.10	0.50	0.54	0.54	0.22	0.11	0.10	0.30	0.19	0.10	n/a	n/a	n/a
ick	0	(203)	0.67	0.00	0.09	0.39	0.21	0.19	0.57	0.54	0.54	0.27	0.15	0.12	0.39	0.21	0.13	n/a	n/a	n/a
e th	10	(223)	0.03	0.01	0.00	0.42	0.25	0.21	0.50	0.55	0.55	0.32	0.10	0.13	0.42	0.25	0.21	11/a	n/a	n/a
ret	10	(234)	0.71	0.02	0.01	0.40	0.23	0.25	0.59	0.55	0.55	0.30	0.19	0.17	0.40	0.23	0.25	0.59	n/a	n/a
ouc	10	(219)	0.75	0.63	0.02	0.50	0.27	0.25	0.00	0.50	0.56	0.43	0.22	0.20	0.50	0.27	0.25	0.62	n/a	n/a
~	14	(303)	0.75	0.04	0.05	0.54	0.30	0.21	0.00	0.57	0.50	0.49	0.25	0.22	0.54	0.30	0.27	0.03	n/a	n/a
(ca)	14	(300)	0.80	0.67	0.05	0.03	0.34	0.31	0.62	0.50	0.57	0.02	0.31	0.20	0.03	0.34	0.31	0.70	0.50	n/a
e l	10	(400)	0.04	0.03	0.07	0.72	0.39	0.30	0.04	0.59	0.50	0.70	0.30	0.34	0.72	0.39	0.30	0.74	0.59	0.61
star	20	(407)	0.00	0.71	0.70	0.01	0.44	0.40	0.00	0.60	0.59	1.00	0.45	0.41	0.01	0.44	0.40	0.79	0.03	0.61
di	20	(500)	0.92	0.74	0.72	0.90	0.49	0.43	0.07	0.01	0.00	1.00	0.55	0.40	0.90	0.49	0.43	0.03	0.00	0.04
dge	22	(009)	1.00	0.70	0.74	1.00	0.54	0.49	0.09	0.02	0.01		0.01	0.50	1.00	0.54	0.49	0.07	0.09	0.07
, e	24	(010)	1.00	0.75	0.70	1.00	0.59	0.54	0.71	0.03	0.02		0.70	0.03	1.00	0.59	0.54	0.91	0.72	0.70
(s)	20	(711)		0.01	0.70		0.64	0.50	0.73	0.64	0.03		0.79	0.72		0.64	0.56	0.95	0.75	0.75
ing	20	(760)		0.00	0.00		0.03	0.02	0.74	0.05	0.04		0.00	0.00		0.09	0.02	1.00	0.70	0.70
pac	36	(102)		0.00	0.03		0.74	0.07	0.70	0.00	0.00		1.00	1.09		0.74	0.07	1.00	0.01	0.70
S	> 10	(314)		1.00	1.09		1.09	1.00	0.01	0.70	0.00		1.00	1.00		1.00	1.00		1.09	0.00
	- 40	(1219)		1 1.00	1.00		1.00	1.00	0.92	0.76	0.75					1.00	1.00		1.00	0.99

•

*

#### Table 65 - Load adjustment factors for 20M rebar in uncracked concrete^{1,2,3}

#### Table 66 - Load adjustment factors for 20M rebar in cracked concrete^{1,2,3}

											Edę	ge distan	ice in sh	near						
	20M cracked concret	d .e	Spa ii	acing fao n tensio	ctor n	Edge o ii	distance n tensio f au	factor n	Spa i	acing facing facing facing facing $f_{av}$	ctor 4	То	⊥ ward ec	lge	∥ To fr	o and av rom edg	way Ie	Conci fact	rete thic for in sh	kness ear⁵
F	mbedmer	nt h	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8
-	in	(mm)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)
	1-3/4	(44)	n/a	n/a	n/a	0.43	0.39	0.39	n/a	n/a	n/a	0.03	0.01	0.01	0.06	0.02	0.02	n/a	n/a	n/a
Ê	3-7/8	(98)	0.58	0.55	0.54	0.53	0.45	0.44	0.53	0.52	0.52	0.09	0.04	0.04	0.18	0.08	0.07	n/a	n/a	n/a
E)	4	(102)	0.58	0.55	0.54	0.54	0.45	0.44	0.54	0.52	0.52	0.10	0.04	0.04	0.19	0.08	0.07	n/a	n/a	n/a
Ŀ	5	(127)	0.61	0.56	0.55	0.59	0.48	0.47	0.54	0.52	0.52	0.14	0.06	0.05	0.27	0.11	0.10	n/a	n/a	n/a
н)	6	(152)	0.63	0.57	0.57	0.64	0.51	0.49	0.55	0.53	0.53	0.18	0.08	0.07	0.36	0.15	0.14	n/a	n/a	n/a
) ss	7	(178)	0.65	0.58	0.58	0.70	0.53	0.52	0.56	0.53	0.53	0.22	0.09	0.09	0.45	0.19	0.17	n/a	n/a	n/a
kne	8	(203)	0.67	0.60	0.59	0.76	0.56	0.54	0.57	0.54	0.54	0.27	0.12	0.10	0.55	0.23	0.21	n/a	n/a	n/a
hich	9	(229)	0.69	0.61	0.60	0.82	0.59	0.57	0.58	0.54	0.54	0.33	0.14	0.12	0.65	0.28	0.25	n/a	n/a	n/a
te t	10	(254)	0.71	0.62	0.61	0.88	0.62	0.60	0.59	0.55	0.55	0.38	0.16	0.15	0.77	0.32	0.29	0.59	n/a	n/a
cre	11	(279)	0.73	0.63	0.62	0.95	0.65	0.62	0.60	0.55	0.55	0.44	0.19	0.17	0.88	0.37	0.34	0.62	, n/a	n/a
con	12	(305)	0.75	0.64	0.63	1.00	0.69	0.65	0.61	0.56	0.56	0.50	0.21	0.19	1.00	0.43	0.38	0.65	n/a	n/a
۰/( ^۳	14	(356)	0.80	0.67	0.65		0.75	0.71	0.62	0.57	0.56	0.64	0.27	0.24		0.54	0.48	0.70	n/a	n/a
°)	16	(406)	0.84	0.69	0.67		0.82	0.77	0.64	0.58	0.57	0.77	0.33	0.30		0.66	0.59	0.75	0.56	n/a
nce	18	(457)	0.88	0.71	0.70		0.89	0.83	0.66	0.59	0.58	0.93	0.39	0.35		0.78	0.71	0.80	0.60	0.58
ista	20	(508)	0.92	0.74	0.72		0.96	0.90	0.68	0.60	0.59	1.00	0.46	0.41		0.92	0.83	0.84	0.63	0.61
le d	22	(559)	0.97	0.76	0.74		1.00	0.96	0.69	0.61	0.60		0.53	0.48		1.00	0.95	0.88	0.66	0.64
gbe	24	(610)	1.00	0.79	0.76			1.00	0.71	0.62	0.61		0.60	0.54			1.00	0.92	0.69	0.67
) / (	26	(660)		0.81	0.78				0.73	0.63	0.62		0.68	0.61				0.96	0.72	0.69
g (s	28	(711)		0.83	0.80				0.75	0.64	0.63		0.76	0.68				0.99	0.74	0.72
acin	30	(762)		0.86	0.83				0.76	0.65	0.64		0.84	0.76				1.00	0.77	0.74
Spé	36	(914)		0.93	0.89				0.82	0.68	0.67		1.00	1.00					0.84	0.82
	> 48	(1219)		1.00	1.00				0.92	0.74	0.72								0.98	0.94

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.

4 Spacing factor reduction in shear applicable when  $c < 3^{*}h_{ef}$ ,  $f_{AV}$  is applicable when edge distance,  $c < 3^{*}h_{ef}$ . If  $c \ge 3^{*}h_{ef}$ , then  $f_{AV} = f_{AN}$ .

5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^{*}h_{ef}$ . If  $c \ge 3^{*}h_{ef}$ , then  $f_{HV} = 1.0$ .

#### Anchor Fastening Technical Guide, Edition 19

*

3.2.3

•

											Edg	je distar	ice in sh	near						
	25M uncracke concret	ed e	Sp: i	acing fac n tension $f_{\rm AN}$	ctor n	Edge ( i	distance n tensio $f_{\scriptscriptstyle {\sf RN}}$	factor n	Spa	acing fac in shear $f_{\rm AV}$	ctor ⁴	То	ward ed $f_{\rm RV}$	ge	∥ To fr	o and av rom edg $f_{_{\rm RV}}$	vay e	Conci fact	rete thick for in she $f_{\rm HV}$	kness ear⁵
E	mbedmen	it h _{ef}	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16
	in.	(mm)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)
Ê	1-3/4	(44)	n/a	n/a	n/a	0.24	0.12	0.10	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.02	n/a	n/a	n/a
Ē	5	(127)	0.59	0.55	0.54	0.32	0.16	0.13	0.54	0.52	0.52	0.11	0.05	0.04	0.22	0.09	0.07	n/a	n/a	n/a
.⊑	6	(152)	0.61	0.56	0.55	0.34	0.18	0.14	0.55	0.53	0.52	0.14	0.06	0.05	0.28	0.12	0.10	n/a	n/a	n/a
; -	7	(178)	0.63	0.57	0.56	0.37	0.19	0.15	0.55	0.53	0.53	0.18	0.08	0.06	0.36	0.15	0.12	n/a	n/a	n/a
s (h	8	(203)	0.65	0.58	0.57	0.40	0.21	0.16	0.56	0.53	0.53	0.22	0.09	0.07	0.40	0.19	0.15	n/a	n/a	n/a
Jes	9	(229)	0.67	0.59	0.58	0.43	0.22	0.18	0.57	0.54	0.53	0.26	0.11	0.09	0.43	0.22	0.18	n/a	n/a	n/a
ickr	10	(254)	0.68	0.60	0.58	0.46	0.24	0.19	0.58	0.54	0.54	0.30	0.13	0.10	0.46	0.24	0.19	n/a	n/a	n/a
e t	11-9/16	(294)	0.71	0.62	0.60	0.51	0.26	0.21	0.59	0.55	0.54	0.38	0.16	0.13	0.51	0.26	0.21	0.59	n/a	n/a
rete	12	(305)	0.72	0.63	0.60	0.52	0.27	0.21	0.59	0.55	0.54	0.40	0.17	0.14	0.52	0.27	0.21	0.60	n/a	n/a
ouc	14	(356)	0.76	0.65	0.62	0.59	0.31	0.24	0.61	0.56	0.55	0.50	0.22	0.17	0.59	0.31	0.24	0.65	n/a	n/a
ŏ	16	(406)	0.79	0.67	0.63	0.68	0.35	0.28	0.62	0.57	0.56	0.62	0.26	0.21	0.68	0.35	0.28	0.69	n/a	n/a
(ca)	18	(457)	0.83	0.69	0.65	0.76	0.39	0.31	0.64	0.58	0.57	0.74	0.31	0.25	0.76	0.39	0.31	0.74	n/a	n/a
ce	18-7/16	(469)	0.84	0.69	0.66	0.78	0.40	0.32	0.64	0.58	0.57	0.76	0.33	0.26	0.78	0.40	0.32	0.75	0.56	n/a
stan	20	(508)	0.87	0.71	0.67	0.85	0.44	0.35	0.65	0.59	0.57	0.86	0.37	0.30	0.85	0.44	0.35	0.78	0.59	n/a
dis	22-3/8	(568)	0.91	0.73	0.69	0.95	0.49	0.39	0.67	0.60	0.58	1.00	0.44	0.35	0.95	0.49	0.39	0.82	0.62	0.58
dge	24	(610)	0.94	0.75	0.70	1.00	0.52	0.42	0.68	0.60	0.59		0.48	0.39	1.00	0.52	0.42	0.85	0.64	0.60
/ec	26	(660)	0.98	0.77	0.72		0.57	0.45	0.70	0.61	0.60		0.55	0.44		0.57	0.45	0.89	0.67	0.62
(s)	28	(711)	1.00	0.79	0.74		0.61	0.49	0.71	0.62	0.60		0.61	0.49		0.61	0.49	0.92	0.69	0.64
ing	30	(762)		0.81	0.75		0.66	0.52	0.73	0.63	0.61		0.68	0.54		0.66	0.52	0.95	0.72	0.67
oac	36	(914)		0.88	0.80		0.79	0.63	0.77	0.65	0.63		0.89	0.71		0.79	0.63	1.00	0.79	0.73
Ś	> 48	(1219)		1.00	0.90		1.00	0.84	0.86	0.71	0.68		1.00	1.00		1.00	0.84		0.91	0.84

Table 67 - Load adjustment factors for 25M rebar in uncracked concrete^{1,2,3}

Table 68 - Load adjustment factors for 25M rebar in cracked concrete^{1,2,3}

													Edg	je distar	nce in sh	near				
	25M cracked concrete	l Ə	Spa i	acing fac n tension $f_{_{\rm AN}}$	ctor n	Edge ( i	distance n tensio $f_{_{\sf RN}}$	factor n	Spa	acing fac in shear $f_{_{AV}}$	ctor ₄	То	ward ed $f_{\rm RV}$	ge	∥ Tr fi	o and av rom edg $f_{_{\rm RV}}$	vay e	Conc fact	rete thic tor in sh $f_{_{\rm HV}}$	kness ear⁵
E	mbedmen	t h _{ef}	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16	15-15/16	19-13/16
	in.	(mm)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)
Ê	1-3/4	(44)	n/a	n/a	n/a	0.42	0.39	0.38	n/a	n/a	n/a	0.02	0.01	0.01	0.05	0.02	0.01	n/a	n/a	n/a
(mr	5	(127)	0.59	0.55	0.54	0.55	0.46	0.44	0.54	0.52	0.52	0.11	0.05	0.03	0.22	0.09	0.07	n/a	n/a	n/a
.⊑	6	(152)	0.61	0.56	0.55	0.60	0.48	0.46	0.55	0.53	0.52	0.14	0.06	0.04	0.29	0.12	0.09	n/a	n/a	n/a
- '(	7	(178)	0.63	0.57	0.56	0.65	0.51	0.48	0.55	0.53	0.52	0.18	0.08	0.06	0.36	0.16	0.11	n/a	n/a	n/a
s (F	8	(203)	0.65	0.58	0.57	0.70	0.53	0.50	0.56	0.53	0.53	0.22	0.10	0.07	0.44	0.19	0.14	n/a	n/a	n/a
nes	9	(229)	0.67	0.59	0.58	0.75	0.56	0.51	0.57	0.54	0.53	0.27	0.11	0.08	0.53	0.23	0.16	n/a	n/a	n/a
lick	10	(254)	0.68	0.60	0.58	0.80	0.59	0.53	0.58	0.54	0.53	0.31	0.13	0.10	0.62	0.27	0.19	n/a	n/a	n/a
e th	11-9/16	(294)	0.71	0.62	0.60	0.89	0.63	0.57	0.59	0.55	0.54	0.39	0.17	0.12	0.77	0.33	0.24	0.60	n/a	n/a
cret	12	(305)	0.72	0.63	0.60	0.91	0.64	0.58	0.59	0.55	0.54	0.41	0.17	0.13	0.82	0.35	0.25	0.61	n/a	n/a
ouo	14	(356)	0.76	0.65	0.62	1.00	0.69	0.62	0.61	0.56	0.55	0.51	0.22	0.16	1.00	0.44	0.32	0.65	n/a	n/a
0/0	16	(406)	0.79	0.67	0.63		0.75	0.66	0.62	0.57	0.56	0.63	0.27	0.19		0.54	0.39	0.70	n/a	n/a
ی ۳	18	(457)	0.83	0.69	0.65		0.81	0.71	0.64	0.58	0.56	0.75	0.32	0.23		0.64	0.46	0.74	n/a	n/a
JCe	18-7/16	(469)	0.84	0.69	0.66		0.83	0.72	0.64	0.58	0.56	0.78	0.33	0.24		0.67	0.48	0.75	0.57	n/a
star	20	(508)	0.87	0.71	0.67		0.87	0.75	0.65	0.59	0.57	0.88	0.38	0.27		0.75	0.54	0.78	0.59	n/a
ġ	22-3/8	(568)	0.91	0.73	0.69		0.95	0.81	0.67	0.60	0.58	1.00	0.44	0.32		0.89	0.64	0.83	0.62	0.56
dge	24	(610)	0.94	0.75	0.70		1.00	0.85	0.68	0.60	0.58		0.49	0.36		0.99	0.71	0.86	0.65	0.58
/e	26	(660)	0.98	0.77	0.72			0.90	0.70	0.61	0.59		0.56	0.40		1.00	0.80	0.89	0.67	0.60
(s)	28	(711)	1.00	0.79	0.74			0.95	0.71	0.62	0.60		0.62	0.45			0.90	0.93	0.70	0.63
Sing	30	(762)		0.81	0.75			1.00	0.73	0.63	0.60		0.69	0.50			1.00	0.96	0.72	0.65
pac	36	(914)		0.88	0.80				0.78	0.66	0.63		0.91	0.65				1.00	0.79	0.71
S	> 48	(1219)		1.00	0.90				0.87	0.71	0.67		1.00	1.00					0.91	0.82

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{er} f_{AV}$  is applicable when edge distance,  $c < 3^*h_{er}$ . If  $c \ge 3^*h_{er}$  then  $f_{AV} = f_{AN}$ . 5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{er}$ . If  $c \ge 3^*h_{er}$  then  $f_{HV} = 1.0$ .

155



											Edg	e distar	nce in sł	near						
	30M uncracke concret	ed e	Spa i	acing fao n tension f	ctor n	Edge ( ii	distance n tension f	factor n	Spa	acing fao in shear f	ctor ₄	То	ward ed	ge	∥ T f	o and av rom edg	vay e	Conc fact	rete thic or in sho	kness ear⁵
F	mbedmen	nt h	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	J HV	23-9/16
-	in	(mm)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)
	1-3/4	(44)	n/a	(100) n/a	(000) n/a	0.25	0.13	0.10	n/a	n/a	(000) n/a	0.02	0.01	0.01	0.04	0.02	0.01	n/a	n/a	n/a
Ê	5-7/8	(150)	0.59	0.55	0.54	0.34	0.10	0.13	0.54	0.52	0.52	0.02	0.01	0.03	0.01	0.02	0.07	n/a	n/a	n/a
Ē	6	(152)	0.59	0.56	0.54	0.34	0.18	0.13	0.54	0.52	0.52	0.12	0.05	0.04	0.24	0.10	0.07	n/a	n/a	n/a
.⊑	7	(178)	0.61	0.57	0.55	0.37	0.19	0.14	0.55	0.53	0.52	0.15	0.06	0.04	0.30	0.13	0.09	n/a	n/a	n/a
, Ê	8	(203)	0.63	0.57	0.56	0.39	0.20	0.15	0.55	0.53	0.52	0.18	0.08	0.05	0.36	0.16	0.11	n/a	n/a	n/a
) ss	9	(229)	0.64	0.58	0.56	0.42	0.21	0.16	0.56	0.53	0.53	0.22	0.09	0.07	0.42	0.19	0.13	n/a	n/a	n/a
éne:	10	(254)	0.66	0.59	0.57	0.45	0.23	0.17	0.57	0.54	0.53	0.25	0.11	0.08	0.45	0.22	0.15	n/a	n/a	n/a
hic	11	(279)	0.67	0.60	0.58	0.47	0.24	0.18	0.57	0.54	0.53	0.29	0.13	0.09	0.47	0.24	0.18	n/a	n/a	n/a
tet	12	(305)	0.69	0.61	0.58	0.50	0.25	0.19	0.58	0.55	0.54	0.33	0.14	0.10	0.50	0.25	0.19	n/a	n/a	n/a
cre	13-1/4	(337)	0.71	0.62	0.59	0.54	0.27	0.21	0.59	0.55	0.54	0.39	0.17	0.12	0.54	0.27	0.21	0.60	n/a	n/a
Son	14	(356)	0.72	0.63	0.60	0.56	0.28	0.21	0.59	0.55	0.54	0.42	0.18	0.13	0.56	0.28	0.21	0.61	n/a	n/a
~	16	(406)	0.75	0.65	0.61	0.63	0.32	0.24	0.61	0.56	0.55	0.51	0.22	0.15	0.63	0.32	0.24	0.65	n/a	n/a
0	18	(457)	0.78	0.67	0.63	0.71	0.35	0.27	0.62	0.57	0.55	0.61	0.26	0.18	0.71	0.35	0.27	0.69	n/a	n/a
nce	20	(508)	0.81	0.69	0.64	0.79	0.39	0.30	0.63	0.58	0.56	0.72	0.31	0.22	0.79	0.39	0.30	0.73	n/a	n/a
lista	20-7/8	(531)	0.83	0.69	0.65	0.82	0.41	0.31	0.64	0.58	0.56	0.77	0.33	0.23	0.82	0.41	0.31	0.75	n/a	n/a
je d	22	(559)	0.85	0.70	0.66	0.87	0.43	0.33	0.65	0.58	0.57	0.83	0.36	0.25	0.87	0.43	0.33	0.77	0.58	n/a
edç	24	(610)	0.88	0.72	0.67	0.94	0.47	0.36	0.66	0.59	0.57	0.94	0.41	0.28	0.94	0.47	0.36	0.80	0.61	n/a
()	26-9/16	(675)	0.92	0.75	0.69	1.00	0.52	0.39	0.68	0.60	0.58	1.00	0.47	0.33	1.00	0.52	0.39	0.84	0.64	0.56
s) D	28	(711)	0.94	0.76	0.70		0.55	0.42	0.69	0.61	0.58		0.51	0.36		0.55	0.42	0.86	0.65	0.58
acir	30	(762)	0.97	0.78	0.71		0.59	0.44	0.70	0.61	0.59		0.57	0.40		0.59	0.44	0.89	0.68	0.60
Spí	36	(914)	1.00	0.83	0.75		0.71	0.53	0.74	0.64	0.61		0.75	0.52		0.71	0.53	0.98	0.74	0.66
-	> 48	(1219)		0.95	0.84		0.95	0.71	0.82	0.68	0.64		1.00	0.80		0.95	0.71	1.00	0.86	0.76

•

*

#### Table 69 - Load adjustment factors for 30M rebar in uncracked concrete^{1,2,3}

#### Table 70 - Load adjustment factors for 30M rebar in cracked concrete^{1,2,3}

													Edg	e distan	ice in sh	near				
	30M cracked concrete	d e	Sp: i	acing fac n tension $f_{\rm AN}$	ctor n	Edge d	distance n tensior $f_{\scriptscriptstyle {\sf RN}}$	factor n	Spa	acing fac in shear $f_{\rm AV}$	ctor	То	ward ed $f_{\rm RV}$	ge	∥ To fi	o and av rom edg $f_{_{\rm RV}}$	vay e	Conc fact	rete thic or in she $f_{\rm HV}$	kness ear⁵
E	mbedmen	th _{ef}	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16
	in.	(mm)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)
	1-3/4	(44)	n/a	n/a	n/a	0.41	0.38	0.38	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.01	n/a	n/a	n/a
(LL	5-7/8	(150)	0.59	0.55	0.54	0.56	0.47	0.44	0.54	0.52	0.52	0.12	0.05	0.03	0.23	0.10	0.07	n/a	n/a	n/a
Ľ.	6	(152)	0.59	0.56	0.54	0.56	0.47	0.44	0.54	0.52	0.52	0.12	0.05	0.03	0.24	0.10	0.07	n/a	n/a	n/a
. <u>-</u>	7	(178)	0.61	0.57	0.55	0.60	0.49	0.46	0.55	0.53	0.52	0.15	0.07	0.04	0.30	0.13	0.09	n/a	n/a	n/a
Ĵ,	8	(203)	0.63	0.57	0.56	0.64	0.51	0.47	0.55	0.53	0.52	0.19	0.08	0.05	0.37	0.16	0.11	n/a	n/a	n/a
SS	9	(229)	0.64	0.58	0.56	0.68	0.53	0.49	0.56	0.53	0.53	0.22	0.10	0.06	0.44	0.19	0.13	n/a	n/a	n/a
kne	10	(254)	0.66	0.59	0.57	0.72	0.56	0.50	0.57	0.54	0.53	0.26	0.11	0.07	0.52	0.22	0.15	n/a	n/a	n/a
hic	11	(279)	0.67	0.60	0.58	0.77	0.58	0.52	0.57	0.54	0.53	0.30	0.13	0.09	0.60	0.26	0.17	n/a	n/a	n/a
ste t	12	(305)	0.69	0.61	0.58	0.81	0.60	0.54	0.58	0.55	0.54	0.34	0.15	0.10	0.68	0.29	0.19	n/a	n/a	n/a
lore	13-1/4	(337)	0.71	0.62	0.59	0.87	0.63	0.56	0.59	0.55	0.54	0.40	0.17	0.11	0.79	0.34	0.23	0.60	n/a	n/a
Sor	14	(356)	0.72	0.63	0.60	0.91	0.65	0.57	0.59	0.55	0.54	0.43	0.19	0.12	0.86	0.37	0.25	0.62	n/a	n/a
a)/	16	(406)	0.75	0.65	0.61	1.00	0.70	0.61	0.61	0.56	0.55	0.52	0.23	0.15	1.00	0.45	0.30	0.66	n/a	n/a
e C	18	(457)	0.78	0.67	0.63		0.75	0.64	0.62	0.57	0.55	0.62	0.27	0.18		0.54	0.36	0.70	n/a	n/a
anc.	20	(508)	0.81	0.69	0.64		0.81	0.68	0.64	0.58	0.56	0.73	0.32	0.21		0.63	0.42	0.74	n/a	n/a
lista	20-7/8	(531)	0.83	0.69	0.65		0.83	0.70	0.64	0.58	0.56	0.78	0.34	0.22		0.68	0.45	0.75	n/a	n/a
je c	22	(559)	0.85	0.70	0.66		0.86	0.72	0.65	0.59	0.56	0.84	0.36	0.24		0.73	0.48	0.77	0.58	n/a
edç	24	(610)	0.88	0.72	0.67		0.92	0.76	0.66	0.59	0.57	0.96	0.42	0.28		0.83	0.55	0.81	0.61	n/a
(	26-9/16	(675)	0.92	0.75	0.69		0.99	0.81	0.68	0.60	0.58	1.00	0.48	0.32		0.97	0.64	0.85	0.64	0.56
9	28	(711)	0.94	0.76	0.70		1.00	0.84	0.69	0.61	0.58		0.52	0.35		1.00	0.69	0.87	0.66	0.57
acin	30	(762)	0.97	0.78	0.71			0.88	0.70	0.62	0.59		0.58	0.39			0.77	0.90	0.68	0.59
Spé	36	(914)	1.00	0.83	0.75			1.00	0.74	0.64	0.61		0.76	0.51			1.00	0.99	0.75	0.65
	> 48	(1219)		0.95	0.84				0.82	0.69	0.64		1.00	0.78				1.00	0.86	0.75

1 Linear interpolation not permitted.

2 Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.

4 Spacing factor reduction in shear applicable when  $c < 3^*h_{ef}$ ,  $f_{AV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{AV} = f_{AN}$ . 5 Concrete thickness reduction factor in shear,  $f_{HV}$  is applicable when edge distance,  $c < 3^*h_{ef}$ . If  $c \ge 3^*h_{ef}$ , then  $f_{HV} = 1.0$ .

#### HIT-RE 500 V3 adhesive with HAS Threaded Rod



## Table 71 - Hilti HIT-RE 500 V3 design information with Hilti HAS threaded rods in hammer drilled holes in accordance with CSA A23.3-14 Annex D^{1,8}

<b>.</b> .						Nomina	l rod diam	eter (in.)			Ref
Desig	n parameter	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4	A23.3-14
Nomi	nal anchor diameter	d	mm	9.5	12.7	15.9	19.1	22.2	25.4	31.8	
Effect	ive minimum embedment ²	h _{ef,min}	mm	60	70	79	89	89	102	127	
Effect	ive maximum embedment ²	h _{ef,max}	mm	191	254	318	381	445	508	635	
Min. c	concrete thickness ²	h _{min}	mm	h _{ef} + 30			h _{ef} +	2d ₀			
Critica	al edge distance	C _{ac}	-				2h _{ef}				
Minim	ium edge distance	C _{min} ³	mm	48	64	79	95	111	127	159	
Minim	ium anchor spacing	S _{min}	mm	48	64	79	95	111	127	159	
Coeff	for factored conc. breakout resistance, uncracked con-	k _{c upcr} ⁴	-				10				D.6.2.2
Coeff	for factored conc. breakout resistance, cracked concrete	k 4	-				7	-	-		D.6.2.2
Conc	rete material resistance factor	Φ	-				0.65				8.4.2
Resis	tance modification factor for tension and shear, concrete	R	_				1.00				D.5.3(c)
failure	modes, Condition B°	Directoric		4 41 .							( )
		Dry and	water	saturated o	concrete	1.000	1.050	1 0 4 0	1.040	1 1 0 0	· · · · ·
P₀°.	Characteristic bond stress in cracked concrete ^{6,7}	τ	psi (MDe)	1,280	1,270	1,260	1,250	1,240	1,240	1,180	D.6.5.2
lue Ide			(IVIPa)	(0.0)	(0.0)	(0.7)	(0.0)	(0.0)	(0.0)	(0.1)	
Tar Tar	Characteristic bond stress in uncracked concrete ^{6,7}	$\tau_{uncr}$	psi (MDa)	2,300	2,300	2,210	2,130	2,040	1,900	1,790	D.6.5.2
		unor	(IVIPa)	(10.4)	(15.9)	(15.2)	(14.7)	(14.1)	(13.5)	(12.3)	
ы В	Characteristic bond stress in cracked concrete ^{6,7}	$\tau_{cr}$	(MPa)	880 (6.1)	870 (6.0)	870 (6.0)	860 (5.9)	(5.9)	(5.9)	810	D.6.5.2
ange			(ivii a)	1.640	1 500	1 530	1 /70	1 / 10	1 350	1 2/0	
Anchor categ	Characteristic bond stress in uncracked concrete ^{6,7}	$\tau_{_{uncr}}$	(MPa)	(11.3)	(11.0)	(10.6)	(10.1)	(9.7)	(9.3)	(8.6)	D.6.5.2
Ancho	or category, dry concrete	-	-	1	1	1	1	1	1	1	
Resis	tance modification factor	R	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
		dry	Water	-filled hole							
9	Observation in the second stress in the second seco		psi	940	940	940	940	940	950	920	DOCO
np. e⊅	Characteristic bond stress in cracked concrete.	$\tau_{cr}$	(MPa)	(6.5)	(6.5)	(6.5)	(6.5)	(6.5)	(6.6)	(6.3)	D.6.5.2
Ter	Characteristic hand stress in uneverted concrete ⁶⁷	_	psi	1,760	1,700	1,660	1,600	1,550	1,500	1,400	Dera
. 5	Characteristic bond stress in uncracked concrete-	τ _{uncr}	(MPa)	(12.1)	(11.7)	(11.4)	(11.0)	(10.7)	(10.3)	(9.7)	D.0.5.2
. %	Characteristic bond stress in cracked concrete ^{6,7}	-	psi	650	650	650	650	650	650	640	D652
np. Je E		L _{cr}	(MPa)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.4)	D.0.J.2
Ter anç	Characteristic bond stress in uncracked concrete ^{6,7}	τ	psi	1,210	1,170	1,140	1,110	1,070	1,040	970	D652
2		uncr	(MPa)	(8.3)	(8.1)	(7.9)	(7.7)	(7.4)	(7.2)	(6.7)	D.0.3.2
Ancho	or category, water-filled hole	-	-	3	3	3	3	3	3	3	
Resis	tance modification factor	R _{wf}	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
		S	ubmerg	ged concre	te						
- °₽	Characteristic bond stress in cracked concrete ^{6,7}	т	psi	820	830	830	840	850	860	860	D652
ge ,		Cr	(MPa)	(5.7)	(5.7)	(5.7)	(5.8)	(5.9)	(5.9)	(5.9)	
Te	Characteristic bond stress in uncracked concrete ^{6,7}	τ	psi	1,530	1,500	1,470	1,430	1,400	1,370	1,300	D652
		uncr	(MPa)	(10.6)	(10.3)	(10.1)	(9.9)	(9.7)	(9.4)	(9.0)	5.0.0.2
, °й	Characteristic bond stress in cracked concrete ^{6,7}	τ	psi	570	570	580	580	590	590	590	D.652
ge		Cr	(MPa)	(3.9)	(3.9)	(4.0)	(4.0)	(4.1)	(4.1)	(4.1)	
anç	Characteristic bond stress in uncracked concrete ^{6,7}	τ	psi	1,060	1,030	1,010	990	960	940	900	D.6.5.2
		- uncr	(MPa)	(7.3)	(7.1)	(7.0)	(6.8)	(6.6)	(6.5)	(6.2)	
Ancho	or category, underwater	-	-	3	3	3	3	3	3	3	
Resis	tance modification factor	R _{uw}		0.75	0.75	0.75	0.75	0.75	0.75	0.75	
Redu	ction for seismic tension	α _{N.seis}	-	0.92	0.93	0.95	1.00	1.00	1.00	1.00	1

1 Design information in this table is taken from ICC-ES ELC-3814, dated April 2018, tables 8 and 9, and converted for use with CSA A23.3-14 Annex D.

2 See figure 4 of section 3.2.4.3.4.

3 Minimum edge distance may be reduced to 45mm  $\leq c_{ai} < 5d$  provided  $T_{inst}$  is reduced. See ESR-3814 section 4.1.9.

4 For all design cases,  $\psi_{c,N} = 1.0$ . The appropriate coefficient for breakout resistance for cracked concrete ( $k_{c,n}$ ) or uncracked concrete ( $k_{c,n-1}$ ) must be used.

5 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

6 Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

7 Bond stress values corresponding to concrete compressive stress  $f'_c = 2,500$  psi (17.2 MPa). For concrete compressive strength,  $f'_c$ , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond stress may be increased by a factor of  $(f'_c/2,500)^{0.25}$  [for SI:  $(f'_c/17.2)^{0.25}$ ] for uncracked concrete and  $(f'c/2,500)^{0.15}$  [for SI:  $(f'_c/17.2)^{0.15}$ ] for cracked concrete.

8 For structures assigned to Seismic Design Categories C, D, E, or F, bond strength values must be multiplied by  $\alpha_{_{N \, sele}}$ 

Anchor Fastening Technical Guide Edition 19 | 3.0 ANCHORING SYSTEMS | 3.2.3 HIT-RE 500 V3 EPOXY ADHESIVE ANCHORING SYSTEM Hilti, Inc. (U.S.) 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.com | 1-800-363-4458

157



### Table 72 - Hilti HIT-RE 500 V3 design information with Hilti HAS threaded rods in diamond core drilled holes in accordance with CSA A23.3-14 Annex D¹

Dooio	n noromator	Sumbol	Linita			Nomina	l rod diam	eter (in.)			Ref
Desig	n parameter	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4	A23.3-14
Nomi	nal anchor diameter	d _a	mm	9.5	12.7	15.9	19.1	22.2	25.4	31.8	
Effect	tive minimum embedment ²	h _{ef}	mm	60	70	79	89	89	102	127	
Effect	tive maximum embedment ²	h _{ef}	mm	191	254	318	381	445	508	635	
Minim	num concrete thickness ²	h _{min}	mm	h _{ef} ⊦	+ 30			h _{ef} + 2d _o			
Critic	al edge distance	C _{ac}	-				2h _{ef}				
Minim	num edge distance	C _{min} ³	mm	48	64	79	95	111	127	159	
Minim	num anchor spacing	S _{min}	mm	48	64	79	95	111	127	159	
Coeff crete	. for factored concrete breakout resistance, uncracked con-	k _{c,uncr} ⁴	-				10				D.6.2.2
Coeff	. for factored concrete breakout resistance, cracked concrete	k_c,cr ⁴	-				7				D.6.2.2
Conc	rete material resistance factor	φ _s	-				0.65				8.4.2
Resis failure	tance modification factor for tension and shear, concrete a modes, Condition $B^{\scriptscriptstyle 5}$	R _{conc}	-				1.00				D.5.3(c)
	Dry and	water satu	rated c	oncrete							
р. А			psi	1,550	1,550	1,550	1,550	1,550	1,550	1,550	
Tem range	Characteristic bond stress in uncracked concrete ^{6,7}	$\tau_{uncr}$	(MPa)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)	D.6.5.2
р. В			psi	1,070	1,070	1,070	1,070	1,070	1,070	1,070	
Terr rang€	Characteristic bond stress in uncracked concrete ^{6,7}		psi	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)	D.6.5.2
Anch	or category, dry concrete	-	-	2	2	3	3	3	3	3	
Resis	tance modification factor	R _{dry}	-	0.85	0.85	0.75	0.75	0.75	0.75	0.75	

1 Design information in this table is taken from ICC-ES ELC-3814, dated April 2018, tables 8 and 10, and converted for use with CSA A23.3-14 Annex D.

2 See figure 4 of section 3.2.4.3.4.

3 Minimum edge distance may be reduced to 45mm  $\leq c_{ai} < 5d$  provided  $T_{inst}$  is reduced. See ESR-3814 section 4.1.9.

4 For all design cases,  $\psi_{c,N} = 1.0$ . The appropriate coefficient for breakout resistance for cracked concrete ( $k_{c,cr}$ ) or uncracked concrete ( $k_{c,unc}$ ) must be used.

5 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

6 Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

7 Bond stress values corresponding to concrete compressive strength  $f'_c$  = 2,500 psi (17.2 MPa). For concrete compressive strength,  $f'_c$ , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond stress may be increased by a factor of ( $f'_c/2,500$ )^{0.25} [for SI: ( $f'_c/17.2$ )^{0.25}] for uncracked concrete.

### Table 73 - Hilti HIT-RE 500 V3 adhesive factored resistance with concrete/bond failure for threaded rod in uncracked concrete^{1,2,3,4,5,6,7,8,9,11}

3.2.3

Newsterl			Tensi	on N _r			She	ar V _r	
anchor diameter in.	Effective embedment in. (mm)	f´ = 20 MPa (2,900 psi) Ib (kN)	f´ = 25 MPa (3,625 psi) Ib (kN)	f´ = 30 MPa (4,350 psi) Ib (kN)	f´ = 40 MPa (5,800 psi) Ib (kN)	f´ = 20 MPa (2,900 psi) Ib (kN)	f´ = 25 MPa (3,625 psi) Ib (kN)	f´ = 30 MPa (4,350 psi) Ib (kN)	f´ = 40 MPa (Š,800 psi) Ib (kN)
	2-3/8	3,060	3,425	3,750	4,330	3,060	3,425	3,750	4,330
	(60)	(13.6)	(15.2)	(16.7)	(19.3)	(13.6)	(15.2)	(16.7)	(19.3)
	3-3/8	5,185	5,800	6,355	7,335	10,375	11,600	12,705	14,670
3/8	(86)	(23.1)	(25.8)	(28.3)	(32.6)	(46.1)	(51.6)	(56.5)	(65.3)
,	4-1/2	7,985	8,930	9,430	10,130	15,970	17,855	18,855	20,260
	(114)	(35.5)	(39.7)	(41.9)	(40.1)	(71.0)	(79.4)	(83.9)	(90.1)
	(101)	(63.2)	(66.8)	(69.9)	(75.1)	(126.3)	(133.6)	(130.8)	(150.2)
	2-3/4	3.815	4 265	4 670	5 395	7 630	8 530	9.345	10 790
	(70)	(17.0)	(19.0)	(20.8)	(24.0)	(33.9)	(37.9)	(41.6)	(48.0)
	4-1/2	7.985	8.930	9.780	11.295	15.970	17.855	19.560	22.585
	(114)	(35.5)	(39.7)	(43.5)	(50.2)	(71.0)	(79.4)	(87.0)	(100.5)
1/2	6	12,295	13,745	15,060	17,385	24,590	27,490	30,115	34,775
	(152)	(54.7)	(61.1)	(67.0)	(77.3)	(109.4)	(122.3)	(134.0)	(154.7)
	10	24,390	25,790	26,995	29,005	48,785	51,585	53,990	58,015
	(254)	(108.5)	(114.7)	(120.1)	(129.0)	(217.0)	(229.5)	(240.2)	(258.1)
	3-1/8	4,620	5,165	5,660	6,535	9,245	10,335	11,320	13,070
	(79)	(20.6)	(23.0)	(25.2)	(29.1)	(41.1)	(46.0)	(50.4)	(58.1)
	5-5/8	11,160	12,480	13,670	15,785	22,320	24,955	27,335	31,565
5/810	(143)	(49.6)	(55.5)	(60.8)	(70.2)	(99.3)	(111.0)	(121.6)	(140.4)
	(101)	17,185	19,210	21,045	24,300	34,365	38,420	42,090	48,600
	(191)	36.620	38 725	40.530	(106.1)	73 245	77 445	81.055	87 100
	(318)	(162.9)	(172.2)	(180.3)	(193 7)	(325.8)	(344 5)	(360.6)	(387.4)
	3-1/2	5.480	6.125	6.710	7.745	10.955	12.250	13.420	15.495
	(89)	(24.4)	(27.2)	(29.8)	(34.5)	(48.7)	(54.5)	(59.7)	(68.9)
	6-3/4	14,670	16,400	17,970	20,745	29,340	32,805	35,935	41,495
2 /410	(171)	(65.3)	(73.0)	(79.9)	(92.3)	(130.5)	(145.9)	(159.8)	(184.6)
3/410	9	22,585	25,255	27,665	31,945	45,175	50,505	55,325	63,885
	(229)	(100.5)	(112.3)	(123.1)	(142.1)	(200.9)	(224.7)	(246.1)	(284.2)
	15	48,600	53,740	56,250	60,445	97,200	107,485	112,495	120,885
	(381)	(216.2)	(239.1)	(250.2)	(268.9)	(432.4)	(478.1)	(500.4)	(537.7)
	3-1/2	5,480	6,125	6,710	7,745	10,955	12,250	13,420	15,495
	(89)	(24.4)	(27.2)	(29.8)	(34.5)	(48.7)	(54.5)	(59.7)	(68.9)
	7-7/8	18,485	20,670	22,640	26,145	36,975	41,340	45,285	52,290
7/810	(200)	(82.2)	(91.9)	(100.7)	(110.3)	(104.5)	(183.9)	(201.4)	(232.0)
	(267)	(126.6)	(1/1 6)	(155 1)	(170 1)	(253.2)	(283.1)	(310.1)	(358 1)
	17-1/2	61 240	68 470	73 325	78 795	122 485	136 940	146 650	157 585
	(445)	(272.4)	(304.6)	(326.2)	(350.5)	(544.8)	(609.1)	(652.3)	(701.0)
	4	6,690	7,480	8,195	9,465	13,385	14,965	16,395	18,930
	(102)	(29.8)	(33.3)	(36.5)	(42.1)	(59.5)	(66.6)	(72.9)	(84.2)
	9	22,585	25,255	27,665	31,945	45,175	50,505	55,325	63,885
<b>1</b> 10	(229)	(100.5)	(112.3)	(123.1)	(142.1)	(200.9)	(224.7)	(246.1)	(284.2)
1	12	34,775	38,880	42,590	49,180	69,550	77,760	85,180	98,360
	(305)	(154.7)	(172.9)	(189.5)	(218.8)	(309.4)	(345.9)	(378.9)	(437.5)
	20	74,825	83,655	91,640	98,875	149,650	167,310	183,280	197,755
	(508)	(332.8)	(372.1)	(407.6)	(439.8)	(665.7)	(744.2)	(815.3)	(879.7)
	5	9,355	10,455	11,455	13,225	18,705	20,915	22,910	26,455
	(127)	(41.6)	(46.5)	(51.0)	(58.8)	(83.2)	(93.0)	(101.9)	
	(296)		35,290 (157 0)		44,040 (100 e)	(280 0)	(314.0)	(3/2 0)	09,200
1-1/410	(200)	48.600	54 335	59.520	68 730	(∠00.0) 97.200	108.670	110.045	137 /60
	(381)	(216.2)	(241 7)	(264.8)	(305.7)	(132 A)	(483.4)	(529.5)	(611 /)
	25	104 570	116.910	128 070	141 095	209 140	233 825	256 140	282 190
	(635)	(465.1)	(520.0)	(569.7)	(627.6)	(930.3)	(1040.1)	(1139.4)	(1255.2)

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 30 - 41 as necessary to the above values. Compare to the steel values in table 29. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete or water-saturated concrete conditions. For water-filled drilled holes multiply design strength by 0.51.

For submerged (under water) applications multiply design strength by 0.44.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda_a$  as follows:

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ .

- 9 Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. For diamond core drilling, except as indicated in note 10, multiply above values by 0.55. Diamond core drilling is not permitted for the water-filled or under-water (submerged) applications.
- 10 Diamond core drilling with Hilti TE-YRT roughening tool is permitted for 5/8", 3/4", 7/8", 1", and 1-1/4". See Table 76.

11 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Anchor Fastening Technical Guide Edition 19 | 3.0 ANCHORING SYSTEMS | 3.2.3 HIT-RE 500 V3 EPOXY ADHESIVE ANCHORING SYSTEM Hilti, Inc. (U.S.) 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.com | 1-800-363-4458



#### Table 74 - Hilti HIT-RE 500 V3 adhesive factored resistance with concrete/bond failure for threaded rod

*

#### in cracked concrete^{1,2,3,4,5,6,7,8,9,11}

Nominal			Tensi	on N _r			She	ear V _r	
anchor diameter in.	Effective embedment in. (mm)	f´ = 20 MPa (2,900 psi) Ib (kN)	f´ = 25 MPa (3,625 psi) Ib (kN)	f´ = 30 MPa ( ^č 4,350 psi) lb (kN)	f´ = 40 MPa (5,800 psi) Ib (kN)	f´ = 20 MPa (2,900 psi) Ib (kN)	f´ = 25 MPa (3,625 psi) Ib (kN)	f´ = 30 MPa (4,350 psi) Ib (kN)	f´ = 40 MPa (5,800 psi) Ib (kN)
	2-3/8	2,145	2,395	2,530	2,645	2,145	2,395	2,530	2,645
	(60)	(9.5)	(10.7)	(11.3)	(11.8)	(9.5)	(10.7)	(11.3)	(11.8)
	(86)	(15 1)	(15.6)	(16.0)	(16.7)	(30.1)	(31.1)	(32.0)	(33.4)
3/8	4-1/2	4 515	4 665	4 795	5 005	9.025	9.335	9 590	10 015
	(114)	(20.1)	(20.8)	(21.3)	(22.3)	(40.1)	(41.5)	(42.7)	(44.5)
	7-1/2	7,520	7,780	7,995	8,345	15,045	15,555	15,985	16,690
	(191)	(33.5)	(34.6)	(35.6)	(37.1)	(66.9)	(69.2)	(71.1)	(74.2)
	2-3/4	2,670	2,985	3,270	3,775	5,340	5,970	6,540	7,555
	(70)	(11.9)	(13.3)	(14.5)	(16.8)	(23.8)	(26.6)	(29.1)	(33.6)
	4-1/2	5,590	6,175	6,345	6,625	11,180	12,345	12,690	13,250
1/2	(114)	(24.9)	(27.5)	(28.2)	(29.5)	(49.7)	(54.9)	(56.4)	(58.9)
	(152)	(35.4)	8,230	8,460	8,830	(70.8)	(73.2)	(75.3)	(78.6)
	10	13 265	13 720	14 100	14 720	26 535	27 435	28 200	29 440
	(254)	(59.0)	(61.0)	(62.7)	(65.5)	(118.0)	(122.0)	(125.4)	(131.0)
	3-1/8	3,235	3,615	3,960	4,575	6,470	7,235	7,925	9,150
	(79)	(14.4)	(16.1)	(17.6)	(20.4)	(28.8)	(32.2)	(35.2)	(40.7)
	5-5/8	7,810	8,735	9,570	10,270	15,625	17,470	19,135	20,540
5/8 ¹⁰	(143)	(34.8)	(38.9)	(42.6)	(45.7)	(69.5)	(77.7)	(85.1)	(91.4)
-, -	7-1/2	12,030	12,760	13,115	13,690	24,055	25,520	26,230	27,385
	(191)	(53.5)	(56.8)	(58.3)	(60.9)	(107.0)	(113.5)	(116.7)	(121.8)
	(219)	20,565	21,265	21,855	22,820	41,135	42,535	43,715	45,640
	3-1/2	3 835	(94.0)	(97.2)	5.425	7 670	8 575	9 390	10.845
	(89)	(17.1)	(19.1)	(20.9)	(24.1)	(34.1)	(38.1)	(41.8)	(48.2)
	6-3/4	10,270	11,480	12,575	14,525	20,540	22,965	25,155	29,045
2 (410	(171)	(45.7)	(51.1)	(55.9)	(64.6)	(91.4)	(102.1)	(111.9)	(129.2)
3/4**	9	15,810	17,675	18,735	19,560	31,620	35,355	37,470	39,120
	(229)	(70.3)	(78.6)	(83.3)	(87.0)	(140.7)	(157.3)	(166.7)	(174.0)
	15	29,380	30,380	31,225	32,600	58,760	60,760	62,445	65,200
	(381)	(130.7)	(135.1)	(138.9)	(145.0)	(261.4)	(270.3)	(277.8)	(290.0)
	3-1/2	(17 1)	4,200	4,695	5,425	(34 1)	0,575 (38.1)	9,390	(48.2)
	7-7/8	12 940	14 470	15 850	18.300	25.880	28 935	31 700	36 605
7 (010	(200)	(57.6)	(64.4)	(70.5)	(81.4)	(115.1)	(128.7)	(141.0)	(162.8)
7/810	10-1/2	19,925	22,275	24,400	26,410	39,850	44,550	48,805	52,820
	(267)	(88.6)	(99.1)	(108.5)	(117.5)	(177.3)	(198.2)	(217.1)	(235.0)
	17-1/2	39,670	41,020	42,160	44,020	79,340	82,040	84,315	88,035
	(445)	(176.5)	(182.5)	(187.5)	(195.8)	(352.9)	(364.9)	(375.1)	(391.6)
	4	4,685	5,240	5,740	6,625	9,370	10,475	11,475	13,250
	(102)	(20.8)	(23.3)	(20.0)	(29.5)	(41.7)	(40.0)	(51.0)	(58.9)
	(229)	(70.3)	(78.6)	(86.1)	(99.5)	(140 7)	(157.3)	(172.3)	(198 9)
<b>1</b> ¹⁰	12	24.340	27.215	29.815	34.425	48.685	54.430	59.625	68.850
	(305)	(108.3)	(121.1)	(132.6)	(153.1)	(216.6)	(242.1)	(265.2)	(306.3)
	20	51,815	53,580	55,065	57,490	103,630	107,155	110,130	114,985
	(508)	(230.5)	(238.3)	(244.9)	(255.7)	(461.0)	(476.7)	(489.9)	(511.5)
	5	6,545	7,320	8,020	9,260	13,095	14,640	16,035	18,520
	(127)	(29.1)	(32.6)	(35.7)	(41.2)	(58.2)	(65.1)	(71.3)	(82.4)
	11-1/4	22,095	24,705	27,060	31,250	44,195	49,410	54,125	62,500
1-1/4 ¹⁰	(∠00) 15	(90.3)	38.035	<u>(1∠0.4)</u> 41.665	(139.0)	(190.0)	(∠19.8) 76.070	(∠40.8) 83.330	<u>(∠≀8.0)</u> 96.220
	(381)	(151.3)	(169 2)	(185.3)	(214 0)	(302 7)	(338 4)	(370 7)	(428 0)
	25	73,200	79,665	81,875	85,485	146.395	159.330	163.750	170.970
	(635)	(325.6)	(354.4)	(364.2)	(380.3)	(651.2)	(708.7)	(728.4)	(760.5)

See Section 3.1.8 for explanation on development of load values 2 See Section 3.1.8 to convert design strength value to ASD value.

3

Linear interpolation between embedment depths and concrete compressive strengths is not permitted. Apply spacing, edge distance, and concrete thickness factors in tables 30-41 as necessary to the above values. Compare to the steel values in table 29 to the above values. The lesser of 4 Apply spacing, edge distance, and concrete unioness factors in tables 50-41 as necessary to the above values. Compare to the store values in tables to the design. Data is for temperature range A: Max. short term temperature =  $130^{\circ}F(55^{\circ}C)$ , max. long term temperature =  $110^{\circ}F(43^{\circ}C)$ . For temperature range B: Max. short term temperature =  $176^{\circ}F(80^{\circ}C)$ , max. long term temperature =  $110^{\circ}F(43^{\circ}C)$  multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over

5

significant periods of time.

significant periods of time.
Tabular values are for dry or water saturated concrete conditions. For water-filled drilled holes multiply design strength by 0.51. For submerged (under water) applications multiply design strength by 0.44.
Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: For sand-lightweight, λ_a = 0.51. For all-lightweight, λ_a = 0.45.
Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. Diamond core drilling is not permitted in cracked concrete except as indicated in note 10.
Diamond core drilling with Hilti TE-YRT roughening tool is permitted for 5/8", 3/4", 7/8", 1", and 1-1/4". See Table 77.
Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values by α_{asis} indicated below. See section 3.1.8 for additional information on seismic anolications.

applications.

 $\begin{array}{l} 3/8\text{-in. diameter} & -\alpha_{\text{seis}} = 0.69 \\ 1/2\text{-in. diameter} & -\alpha_{\text{seis}} = 0.70 \\ 5/8\text{-in. diameter} & -\alpha_{\text{seis}} = 0.71 \\ 3/4\text{-in. diameter} \text{ and larger} & -\alpha_{\text{seis}} = 0.75 \end{array}$ 

3.2.3

	HAS-V AS	HAS-V-36 / HAS-V-36 HDG ASTM F1554 Gr.36 ^{4,6} Seismic		HAS-E AST	-55 / HAS-E-5 M F1554 Gr. 5	55 HDG 55 ^{4,5,6}	HAS-B- AS AST	105 / HAS-B- TM A193 B7 a M F 1554 Gr.1	105 HDG and 105 ^{4,6}	HAS ASTM ASTM A	S-R stainless s F593 (3/8-in t 193 (1-1/8-in	steel to 1-in)⁵ to 2-in)⁴
Nominal anchor diameter in.	Tensile¹ ΦN _{sar} Ib (kN)	Shear² ΦV _{sar} Ib (kN)	Seismic Shear ³ ΦV _{sar,eq} Ib (kN)	Tensile¹ ΦN _{sar} Ib (kN)	Shear² ΦV _{sar} Ib (kN)	Seismic Shear ³ ΦV _{sar,eq} Ib (kN)	Tensile¹ ΦN _{sar} Ib (kN)	Shear² ΦV _{sar} Ib (kN)	Seismic Shear ³ ΦV _{sar,eq} Ib (kN)	Tensile¹ ΦN _{sar} Ib (kN)	Shear² ΦV _{sar} Ib (kN)	Seismic Shear ³ ΦV _{sar,eq} Ib (kN)
3/8	3,055	1,720	1,030	3,955	2,225	2,225	6,570	3,695	3,695	4,610	2,570	2,055
	(13.6)	(7.7)	(4.6)	(17.6)	(9.9)	(9.9)	(29.2)	(16.4)	(16.4)	(20.5)	(11.4)	(9.1)
1/2	5,595 (24.9)	3,150 (14.0)	1,890 (8.4)	7,240 (32.2)	4,070 (18.1)	4,070 (18.1)	12,035 (53.5)	6,765 (30.1)	6,765 (30.1)	8,445 (37.6)	4,705 (20.9)	3,765 (16.7)
5/8	8,915	5,015	3,010	11,525	6,485	6,485	19,160	10,780	10,780	13,445	7,490	5,990
	(39.7)	(22.3)	(13.4)	(51.3)	(28.8)	(28.8)	(85.2)	(48.0)	(48.0)	(59.8)	(33.3)	(26.6)
3/4	13,190	7,420	4,450	17,060	9,600	9,600	28,365	15,955	15,955	16,920	9,425	7,540
	(58.7)	(33.0)	(19.8)	(75.9)	(42.7)	(42.7)	(126.2)	(71.0)	(71.0)	(75.3)	(41.9)	(33.5)
7/8	18,210	10,245	6,145	23,550	13,245	13,245	39,150	22,020	22,020	23,350	13,010	10,410
	(81.0)	(45.6)	(27.3)	(104.8)	(58.9)	(58.9)	(174.1)	(97.9)	(97.9)	(103.9)	(57.9)	(46.3)
1	23,890	13,440	8,065	30,890	17,380	17,380	51,360	28,890	28,890	30,635	17,065	13,650
	(106.3)	(59.8)	(35.9)	(137.4)	(77.3)	(77.3)	(228.5)	(128.5)	(128.5)	(136.3)	(75.9)	(60.7)
1-1/4	38,225 (170.0)	21,500 (95.6)	12,900 (57.4)	49,425 (219.9)	27,800 (123.7)	27,800 (123.7)	82,175 (365.5)	46,220 (205.6)	46,220 (205.6)	37,565 (167.1)	21,130 (94.0)	16,905 (75.2)

#### Table 75 - Steel factored resistance for Hilti HAS threaded rods for use with CSA A23.3-14 Annex D

1 Tensile =  $\phi A_{se,N} f_{uta} R$  as noted in CSA A23.3-14 Eq. D.2.

Shear = φ 0.60 Å_{se,V} f_{uta} R as noted in CSA A23.3-14 Eq. D.31.
 Seismic Shear = α_{Vseis} V_{sar} : Reduction factor for seismic shear only. See CSA A23.3 Annex D for additional information on seismic applications. Seismic shear for HIT-RE 500 V3

4 HAS-V, HAS-E (3/8-in to 1-1/4-in), HAS-B, and HAS-R (Class 1; 1-1/4-in) threaded rods are considered ductile steel elements (including HDG rods).

5 HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements.

6 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

### Table 75 - Hilti HIT-RE 500-V3 design information with HAS threaded rods in core drilled holes roughened with the TE-YRT Roughening Tool in accordance with CSA A23.3-14 Annex D^{1,8}

Desid	n parameter	Symbol	Linite		Nominal	rod diam	neter (in.)		Ref
Desig		Oymbol	Onits	5/8	3/4	7/8	1	1-1/4	A23.3-14
Nom	nal anchor diameter	d _a	mm	15.9	19.1	22.2	25.4	31.8	
Effec	tive minimum embedment ²	h _{ef}	mm	79	89	89	102	127	
Effec	tive maximum embedment ²	h _{ef}	mm	318	286	445	508	635	
Minin	num concrete thickness ²	h _{min}	mm			h _{ef} + 2d _o			
Critic	al edge distance	C _{ac}	-			2h _{ef}			
Minin	num edge distance	C _{min} ³	mm	79	95	111	127	159	
Minin	num anchor spacing	Smin	mm	79	95	111	127	159	
Coef	for factored concrete breakout resistance, uncracked concrete	k_4 ⁴	-			10			D.6.2.2
Coef	. for factored concrete breakout resistance, cracked concrete	k_4	-			7			D.6.2.2
Conc	rete material resistance factor	φ factor $φ_s$ - 0.65 8.4.2							
Resis	tance modification factor for tension and shear, concrete failure modes, Condition B ⁵	R _{conc}	-			1.00			D.5.3(c)
	Dry and water saturated concret	e							
ŝ	Characteristic hand atropp in proplyed concrete ⁶⁷	_	psi	880	875	870	870	825	D650
e A.		1 cr	(MPa)	(6.1)	(6.0)	(6.0)	(6.0)	(5.7)	D.0.5.2
Ter ang	Characteristic hand stress in unercalized constate ⁶⁷	_	psi	2,210	2,130	2,040	1,960	1,790	DCEO
-	Characteristic bond stress in uncracked concrete	τ _{uncr}	(MPa)	(15.2)	(14.7)	(14.1)	(13.5)	(12.3)	D.0.5.2
			psi	610	605	605	600	570	DOCO
e B.	Characteristic bond stress in cracked concrete."	τ _{cr}	(MPa)	(4.2)	(4.2)	(4.2)	(4.1)	(3.9)	D.0.5.2
Ter ang			psi	1,530	1,470	1,410	1,350	1,240	DOCO
L	Characteristic bond stress in uncracked concrete	$\tau_{uncr}$	(MPa)	(10.6)	(10.1)	(9.7)	(9.3)	(8.6)	D.6.5.2
Anch	or category, dry concrete	-	-	1	1	1	1	1	
Resis	tance modification factor	R _{dry}	-	1.00	1.00	1.00	1.00	1.00	
Redu	ction for seismic tension	α _{N,seis}	-	0.95	1.00	1.00	1.00	1.00	

1 Design information in this table is taken from ICC-ES ELC-3814, dated April 2018, table 11 and 12, and converted for use with CSA A23.3-14 Annex D.

2 See figure 8 of section 3.2.4.3.4.

3 Minimum edge distance may be reduced to 45mm  $\leq c_{ai} < 5d$  provided Tinst is reduced. See ESR-3814 section 4.1.9.

4 For all design cases,  $\psi_{cN} = 1.0$ . The appropriate coefficient for breakout resistance for cracked concrete ( $k_{c,un}$ ) or uncracked concrete ( $k_{c,un}$ ) must be used.

5 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

6 Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

- 7 Bond stress values correspond to concrete compressive strength in the range 2,500 psi  $\leq f_{c}^{i} \leq$  8,000 psi.
- 8 For structures assigned to Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by  $\alpha_{N.seis}$ .

Anchor Fastening Technical Guide Edition 19 | 3.0 ANCHORING SYSTEMS | 3.2.3 HIT-RE 500 V3 EPOXY ADHESIVE ANCHORING SYSTEM Hilti, Inc. (U.S.) 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.com | 1-800-363-4458



Nominal			Tensi	ion N _r			She	ar V _r	
anchor diameter	Effective embedment	$f'_{c} = 20 \text{ MPa}$ (2,900 psi)	f' _c = 25 MPa (3,625 psi)	f' _c = 30 MPa (4,350 psi)	f' _c = 40 MPa (5,800 psi)	f' _c = 20 MPa (2,900 psi)	f' _c = 25 MPa (3,625 psi)	f' _c = 30 MPa (4,350 psi)	f' _c = 40 MPa (5,800 psi)
In.									
	3-1/8	4,620	5,165	5,660	6,535	9,245	10,335	11,320	13,070
	(79)	(20.6)	(23.0)	(25.2)	(29.1)	(41.1)	(46.0)	(50.4)	(58.1)
	5-5/8	(10.6)	12,480	13,670	15,785	22,320	24,955	27,335	31,565
5/8	(143)	(49.6)	(55.5)	(60.8)	(70.2)	(99.3)	(111.0)	(121.6)	(140.4)
	(101)	(76.4)	19,210	21,045	21,100	34,305	30,420	42,090	42,320
		(70.4)	(65.5)	(93.0)	(94.1)	(152.9)	(170.9)	(107.2)	(100.2)
	(219)	(156.0)	(156.0)	(156.0)	(156.0)	(212.7)	(212.7)	(212.7)	(212.7)
	(316)	(130.9)	(130.9)	(130.9)	7 7 45	10.055	10.050	12 400	15 405
	(80)	(24.4)	(07.0)	(20.8)	(34.5)	(48.7)	(54.5)	(59.7)	(68.0)
	6-3/4	14 670	16 400	17 970	20.745	29.340	32 805	35.935	(00.3)
	(171)	(65.3)	(73.0)	(79.9)	(92.3)	(130.5)	(1/5 9)	(159.8)	(184.6)
3/4	(171) Q	22 585	25 255	27 665	29 365	(130.3)	50 505	55 325	58 735
	(229)	(100.5)	(112.3)	(123.1)	(130.6)	(200.9)	(224 7)	(246 1)	(261.3)
	11-1/4	31 565	35 290	36 710	36 710	63 135	70.585	73 420	73 420
	(286)	(140.4)	(157.0)	(163.3)	(163.3)	(280.8)	(314.0)	(326.6)	(326.6)
	3-1/2	5.480	6.125	6,710	7,745	10.955	12,250	13 420	15 495
	(89)	(24.4)	(27.2)	(29.8)	(34.5)	(48.7)	(54.5)	(59.7)	(68.9)
	7-7/8	18.485	20.670	22.640	26.145	36.975	41.340	45.285	52.290
- 6	(200)	(82.2)	(91.9)	(100.7)	(116.3)	(164.5)	(183.9)	(201.4)	(232.6)
7/8	10-1/2	28,465	31,820	34,860	38,285	56,925	63,645	69,720	76,565
	(267)	(126.6)	(141.6)	(155.1)	(170.3)	(253.2)	(283.1)	(310.1)	(340.6)
	17-1/2	61,240	63,805	63,805	63,805	122,485	127,610	127,610	127,610
	(445)	(272.4)	(283.8)	(283.8)	(283.8)	(544.8)	(567.6)	(567.6)	(567.6)
	4	6,690	7,480	8,195	9,465	13,385	14,965	16,395	18,930
	(102)	(29.8)	(33.3)	(36.5)	(42.1)	(59.5)	(66.6)	(72.9)	(84.2)
	9	22,585	25,255	27,665	31,945	45,175	50,505	55,325	63,885
1	(229)	(100.5)	(112.3)	(123.1)	(142.1)	(200.9)	(224.7)	(246.1)	(284.2)
	12	34,775	38,880	42,590	48,040	69,550	77,760	85,180	96,085
	(305)	(154.7)	(172.9)	(189.5)	(213.7)	(309.4)	(345.9)	(378.9)	(427.4)
	20	74,825	80,070	80,070	80,070	149,650	160,140	160,140	160,140
	(508)	(332.8)	(356.2)	(356.2)	(356.2)	(665.7)	(712.3)	(712.3)	(712.3)
	5	9,355	10,455	11,455	13,225	18,705	20,915	22,910	26,455
	(127)	(41.6)	(46.5)	(51.0)	(58.8)	(83.2)	(93.0)	(101.9)	(117.7)
	11-1/4	31,565	35,290	38,660	44,640	63,135	70,585	77,320	89,285
1-1/4	(286)	(140.4)	(157.0)	(172.0)	(198.6)	(280.8)	(314.0)	(343.9)	(397.1)
/ .	15	48,600	54,335	59,520	68,555	97,200	108,670	119,045	137,110
	(381)	(216.2)	(241.7)	(264.8)	(304.9)	(432.4)	(483.4)	(529.5)	(609.9)
	25	104,570	114,255	114,255	114,255	209,140	228,515	228,515	228,515
	(635)	(465.1)	(508.2)	(508.2)	(508.2)	(930.3)	(1016.5)	(1016.5)	(1016.5)

### Table 76 - Hilti HIT-RE 500 V3 Core Drilled and roughened with TE-YRT Roughening Tool adhesive factored resistance with concrete / bond failure for threaded rod in uncracked concrete^{1,2,3,4,5,6,7,8,9}

*

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 30 - 41 as necessary to the above values. Compare to the steel values in table 29. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete or water-saturated concrete conditions. Water-filled and submerged (under water) applications are not permitted for this hole preparation method.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda_a$  as follows:

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ . 9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

#### Tension N Shear V, Nominal anchor Effective f'. = 20 MPa f'_ = 25 MPa = 30 MPa f'. = 40 MPa f'_ = 20 MPa f'_ = 25 MPa f'. = 30 MPa f'_ = 40 MPa (4,350 psi) (5,800 psi) diameter embedment (2,900 psi) (3,625 psi) (5.800 psi) (2,900 psi) (3,625 psi) (4.350 psi) in. in. (mm) lb (kN) 3-1/8 3,235 3,510 3,510 3,510 6,470 7,020 7,020 7,020 (79) (14.4)(15.6)(15.6)(15.6)(28.8)(31.2)(31.2)(31.2)5-5/8 6,320 6,320 6,320 6,320 12,640 12,640 12,640 12,640 (28.1)(28.1)(28.1) (28.1)(56.2) (56.2)(56.2) (56.2)(143)5/8 16.850 16,850 7-1/2 8 4 2 5 8 4 2 5 8 4 2 5 8 4 2 5 16.850 16.850 (37.5)(37.5)(37.5) (37.5) (75.0) (75.0) (75.0) (75.0) (191)14.045 14.045 14.045 14.045 28,085 28.085 28.085 28.085 12 - 1/2(62.5) (62.5) (62.5) (124.9) (124.9) (318) (62.5)(124.9)(124.9)3-1/2 3,835 4,285 4,690 4,690 7,670 8,575 9,385 9,385 (89) (17.1)(19.1) (20.9)(20.9)(34.1) (38.1)(41.7) (41.7)6-3/4 9.050 9.050 9.050 9.050 18.095 18,095 18.095 18.095 (171)(40.2) (40.2) (40.2) (40.2) (80.5) (80.5) (80.5) (80.5) 3/4 12,065 12,065 12,065 12,065 24,130 24,130 24,130 24,130 9 (229)(53.7)(53.7)(53.7)(53.7)(107.3)(107.3)(107.3)(107.3)11-1/4 15,080 15,080 15,080 15,080 30,160 30,160 30,160 30,160 (286) (67.1) (67.1)(67.1) (134.2)(134.2)(134.2) (67.1)(134.2)3-1/2 3,835 4.285 4.695 5,425 7,670 8,575 9,390 10,845 (89) (17.1) (19.1) (20.9) (24.1) (34.1) (38.1) (41.8) (48.2) 7-7/8 12,245 12,245 12,245 12,245 24,490 24,490 24,490 24,490 (200) (54.5)(54.5)(54.5)(54.5)(108.9)(108.9)(108.9)(108.9) 7/8 16.325 16.325 16.325 16.325 32.655 32.655 32.655 10 - 1/232,655 (267)(72.6)(72.6)(72.6)(72.6)(145.2)(145.2)(145.2)(145.2)17-1/2 27,210 27,210 27,210 27,210 54,420 54,420 54,420 54,420 (121.0)(121.0)(121.0)(242.1) (242.1) (242.1) (242.1) (445) (121.0)5,740 9.370 10.475 13,250 4 4,685 5,240 6.625 11,475 (20.8) (46.6) (102) (23.3)(25.5)(29.5)(41.7)(51.0) (58.9)9 15.810 15,995 15.995 15,995 31.620 31.985 31.985 31.985 (229)(70.3)(71.1)(71.1)(71.1)(140.7)(142.3)(142.3)(142.3)1 12 21,325 21.325 21,325 21.325 42,650 42,650 42.650 42,650 (305) (94.9) (94.9) (94.9) (94.9) (189.7) (189.7)(189.7) (189.7) 20 35,540 35,540 35,540 35,540 71,080 71,080 71,080 71,080 (508) (158.1)(158.1)(158.1)(158.1)(316.2) (316.2) (316.2) (316.2) 5 6,545 7,320 8,020 9.260 13,095 14,640 16,035 18,520 (58.2) (127)(29.1)(32.6)(35.7)(41.2)(65.1)(71.3)(82.4)11-1/4 22.095 23.695 23.695 23.695 44,195 47,395 47.395 47,395 (105.4)(105.4)(105.4)(210.8) (286)(98.3)(196.6)(210.8) (210.8)1-1/4 15 31,595 31,595 31,595 31,595 63,190 63,190 63,190 63,190 (381) (140.5) (140.5)(140.5)(140.5) (281.1) (281.1)(281.1) (281.1)52,660 52,660 52,660 105,320 105,320 25 52,660 105.320 105.320 (635) (234.2)(234.2)(234.2)(234.2) (468.5) (468.5) (468.5) (468.5)

### Table 77 - Hilti HIT-RE 500 V3 Core Drilled and roughened with TE-YRT Roughening Tool adhesive factored resistance with concrete / bond failure for threaded rod in cracked concrete^{1,2,3,4,5,6,7,8,9}

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 30 - 41 as necessary to the above values. Compare to the steel values in table 29. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete or water-saturated concrete conditions. Water-filled and submerged (under water) applications are not permitted for this hole preparation method.

Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by  $\lambda a$  as follows: For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ .

9 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values by α_{seis} indicated below. See section 3.1.8 for additional information on seismic applications.

5/8-in. diameter  $\alpha_{seis}$  = 0.71 3/4-in. diameter and larger -  $\alpha_{seis}$  = 0.75 *



#### HIT-RE 500 V3 adhesive with HIS-(R)N Inserts



### Table 78 - Hilti HIT-RE 500 V3 design information with Hilti HIS-N and HIS-RN internally threaded inserts in hammer drilled holes in accordance with CSA A23.3-14 Annex D^{1,7}

*

Desir		Cirrentin e l	Linite		Nominal bolt/cap s	crew diameter (in.)		Ref
Desigi	n parameter	Symbol	Units	3/8	1/2	5/8	3/4	A23.3-14
HIS in	sert outside diameter	D	mm	16.5	20.5	25.4	27.6	
Effecti	ve embedment ²	h _{ef}	mm	110	125	170	205	
Min. c	oncrete thickness ²	h _{min}	mm	150	170	230	270	
Critica	l edge distance	Cac	-		21	n _{ef}		
Minim	um edge distance	C _{min}	mm	83	102	127	140	
Minim	um anchor spacing	S _{min}	mm	83	102	127	140	
Coeff.	for factored conc. breakout resistance, uncracked concrete	k _{c,uncr} ³	-		1	0		D.6.2.2
Coeff.	for factored conc. breakout resistance, cracked concrete	k _{c.cr} ³	-		7	7		D.6.2.2
Concr	ete material resistance factor	Φ _c	-		0.	65		8.4.2
Resist modes	ance modification factor for tension and shear, concrete failure $s,$ Condition $B^{\scriptscriptstyle 5}$	R _{conc}	-		1.	00		D.5.3(c)
		Dry and	water sat	urated concrete				
20	Characteristic band stress in cracked concrete ^{6.7}	~	psi	1,070	1,070	1,070	1,070	D652
np. Je ∕		L _{cr}	(MPa)	(7.4)	(7.4)	(7.4)	(7.4)	D.0.5.2
anc	Characteristic bond stress in uncracked concrete 67	τ	psi	1,790	1,790	1,790	1,790	D652
2		uncr	(MPa)	(12.3)	(12.3)	(12.3)	(12.3)	D.0.3.2
32	Characteristic bond stress in cracked concrete ^{6,7}	τ	psi	740	740	740	740	D652
je E	Characteristic bond stress in chacked concrete	Cr	(MPa)	(5.1)	(5.1)	(5.1)	(5.1)	0.0.3.2
anç	Characteristic hand stress in unarracked constate ^{6,7}	τ	psi	1,240	1,240	1,240	1,240	D652
2	Characteristic bond stress in uncracked concrete 6.7		(MPa)	(8.6)	(8.6)	(8.6)	(8.6)	D.0.3.2
Ancho	r category, dry concrete	-	-	1	1	1	1	
Resist	ance modification factor	R _{dry}	-	1.00	1.00	1.00	1.00	
			Water-fill	ed hole				
45	Characteristic bond stress in cracked concrete ^{6,7}	τ	psi	800	810	820	820	D652
dm d		Cr	(MPa)	(5.5)	(5.6)	(5.7)	(5.7)	D.0.0.2
anç	Characteristic bond stress in uncracked concrete ^{6,7}	τ	psi	1,340	1,350	1,370	1,380	D652
2		uncr	(MPa)	(9.2)	(9.3)	(9.4)	(9.5)	D.0.3.2
. °n	Characteristic bond stress in cracked concrete ^{6,7}	τ	psi	550	560	570	570	D652
np Je E		Cr	(MPa)	(3.8)	(3.9)	(3.9)	(3.9)	D.0.0.2
anç	Characteristic bond stress in uncracked concrete 6,7	τ	psi	920	930	950	950	D652
		uncr	(MPa)	(6.3)	(6.4)	(6.6)	(6.6)	D.0.0.2
Ancho	r category, water-filled hole	-	-	3	3	3	3	
Resist	ance modification factor	R _{wf}	-	0.75	0.75	0.75	0.75	
		Un	derwater a	pplications				
-°°	Characteristic bond stress in cracked concrete ^{6,7}	τ	psi	710	720	750	750	D652
ge /		Cr	(MPa)	(4.9)	(5.0)	(5.2)	(5.2)	D.0.0.2
ang	Characteristic bond stress in uncracked concrete 6,7	т	psi	1,190	1,210	1,250	1,260	D652
-		uncr	(MPa)	(8.2)	(8.3)	(8.6)	(8.7)	D.0.0.2
- m	Characteristic bond stress in cracked concrete ^{6,7}	τ	psi	490	500	510	520	D.6.5.2
ge		cr	(MPa)	(3.4)	(3.4)	(3.5)	(3.6)	
anç anç	Characteristic bond stress in uncracked concrete 6,7	τ	psi	820	840	860	870	D.6.5.2
		uncr	(MPa)	(5.7)	(5.8)	(5.9)	(6.0)	
Ancho	r category, underwater	-	-	3	3	3	3	
Resist	ance modification factor	R _{uw}		0.75	0.75	0.75	0.75	
Reduc	tion for seismic tension	α _{N.seis}	-	1.00	1.00	1.00	1.00	

1 Design information in this table is taken from ICC-ES ELC-3814, dated April 2018, tables 16 and 17, and converted for use with CSA A23.3-14 Annex D.

2 See figure 3 of this section.

3 For all design cases,  $\psi_{c,N} = 1.0$ . The appropriate coefficient for breakout resistance for cracked concrete ( $k_{c,c'}$ ) or uncracked concrete ( $k_{c,unc'}$ ) must be used.

4 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

5 Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Bond stress values corresponding to concrete compressive strength f¹_{.c} = 2,500 psi (17.2 MPa). For concrete compressive strength, f¹_{.c}, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond stress may be increased by a factor of (f¹_{.c}/2,500)^{0.25} [for SI: (f¹_{.c}/17.2)^{0.25}]. for uncracked concrete and (f¹_{.c}/2,500)^{0.15} [for SI: (f¹_{.c}/17.2)^{0.15}] for cracked concrete

7 For structures assigned to Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by  $\alpha_{N,seis}$ 

#### Table 79 - Hilti HIT-RE 500 V3 design information with Hilti HIS-N and HIS-RN internally threaded inserts in diamond core drilled holes in accordance with CSA A23.3-14 Annex D1

Desire		Oursels at	Linite		Nominal bolt/cap s	screw diameter (in.)		Ref
Design	parameter	Symbol	Units	3/8	1/2	5/8	3/4	A23.3-14
HIS ins	ert outside diameter	D	mm	16.5	20.5	25.4	27.6	
Effectiv	e embedment ²	h	mm	110	125	170	205	
Min. co	ncrete thickness ²	h _{min}	mm	150	170	230	270	
Critical	edge distance	C _{ac}	-		21	n _{ef}		
Minimu	m edge distance	Cmin	mm	83	102	127	140	
Minimu	m anchor spacing	S _{min}	mm	83	102	127	140	
Coeff.	or factored conc. breakout resistance, uncracked concrete	k ³	-		1	0		D.6.2.2
Coeff.	or factored conc. breakout resistance, cracked concrete	k _{c.cr} ³	-			7		D.6.2.2
Concre	te material resistance factor	φ	-		0.	65		8.4.2
Resista modes	ince modification factor for tension and shear, concrete failure , Condition $B^{\scriptscriptstyle 5}$	R _{conc}	-		1.	00		D.5.3(c)
			Dry con	crete				
mp. nge A ⁵	Characteristic bond stress in uncracked concrete 6.7		psi	1,200	1,200	1,200	1,200	D.6.5.2
⊢¤ `		cr	(MPa)	(8.3)	(8.3)	(8.3)	(8.3)	
np. 35	Characteristic bond stress in uncracked concrete ^{6,7}	Ŧ	psi	830	830	830	830	D652
Ter		С _{сг}	(MPa)	(5.7)	(5.7)	(5.7)	(5.7)	D.0.3.2
Anchor	category, dry concrete	-	-	3	3	3	3	
Resista	Ince modification factor	R _{dry}	-	0.75	0.75	0.75	0.75	
		N	later satur	ated hole				
ge.			psi	1,200	1,200	1,200	1,200	
ranç A	Characteristic bond stress in uncracked concrete ^{6,7}	$\tau_{cr}$	(MPa)	(8.3)	(8.3)	(8.3)	(8.3)	D.6.5.2
de			psi	830	830	830	830	_
Tem ranç B ⁵	Characteristic bond stress in uncracked concrete 6.7		(MPa)	(5.7)	(5.7)	(5.7)	(5.7)	D.6.5.2
Anchor	category, water-saturated conc.	-	-	3	3	3	3	
Resists	ince modification factor	R	_	0.75	0.75	0.75	0.75	

1 Design information in this table is taken from ICC-ES ELC-3814, dated April 2018, tables 16 and 17, and converted for use with CSA A23.3-14 Annex D.

2 See figure 8 of section 3.2.4.3.6.

3 For all design cases,  $\Psi_{c,N} = 1.0$ . The appropriate coefficient for breakout resistance for cracked concrete ( $k_{c,cr}$ ) or uncracked concrete ( $k_{c,unc}$ ) must be used. 4 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

5 Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Bond stress values corresponding to concrete compressive strength f¹_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f¹_s, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond stress may be increased by a factor of (f¹_c/2,500)^{0.25} [for SI: (f¹_c/17.2)^{0.25}] for uncracked concrete.

*



### Table 80 - Hilti HIT-RE 500 V3 adhesive factored resistance with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete^{1,2,3,4,5,6,7,8,9,11}

			Tensi	on N _r			She	ar V _r	
Thread size	Effective	f′ _c = 20 MPa	f´ _c = 25 MPa	f´ _c = 30 MPa	f´ _c = 40 MPa	f′ _c = 20 MPa	f´ _c = 25 MPa	f´ _c = 30 MPa	f´ _c = 40 MPa
	embedment	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)
	in. (mm)	Ib (kN)							
3/8-16 UNC	4-3/8	7,540	8,430	9,235	10,660	15,080	16,860	18,470	21,325
	(110)	(33.5)	(37.5)	(41.1)	(47.4)	(67.1)	(75.0)	(82.1)	(94.9)
1/2-13 UNC10	5	9,135	10,210	11,185	12,915	18,265	20,420	22,370	25,830
	(125)	(40.6)	(45.4)	(49.8)	(57.5)	(81.3)	(90.8)	(99.5)	(114.9)
5/8-11 UNC10	6-3/4	14,485	16,195	17,740	20,485	28,970	32,390	35,480	40,970
	(170)	(64.4)	(72.0)	(78.9)	(91.1)	(128.9)	(144.1)	(157.8)	(182.2)
3/4-10 UNC ¹⁰	8-1/8	19,180	21,445	23,490	27,125	38,360	42,890	46,985	54,255
	(205)	(85.3)	(95.4)	(104.5)	(120.7)	(170.6)	(190.8)	(209.0)	(241.3)

*

ا ب ا

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 50 - 51 as necessary to the above values. Compare to the steel values in table 49. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. 6 Tabular values are for dry concrete or water-saturated concrete conditions.

For water-filled drilled holes multiply design strength by 0.52. For submerged (under water) applications multiply design strength by 0.46.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by  $\lambda_{\lambda}$  as follows:

For sand-lightweight,  $\lambda_{a} = 0.51$ . For all-lightweight,  $\lambda_{a} = 0.45$ .

9 Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. For diamond core drilling, except as indicated in note 10, multiply uncracked concrete tabular values by 0.57.

Diamond core drilling is not permitted for the water-filled or under-water (submerged) applications.

10 Diamond core drilling with Hilti TE-YRT roughening tool is permitted for 1/2-13 UNC, 5/8-11 UNC, and 3/4-10 UNC anchors in dry and water-saturated concrete. See Table 83.

11 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

### Table 81 - Hilti HIT-RE 500 V3 adhesive factored resistance with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete^{1,2,3,4,5,6,7,8,9,11}

			Tensi	ion N _r			She	ar V _r	
Thread size	Effective	f′ _c = 20 MPa	f´ _c = 25 MPa	f´ _c = 30 MPa	f´ _c = 40 MPa	f′ _c = 20 MPa	f´ _c = 25 MPa	f´ _c = 30 MPa	f´ _c = 40 MPa
	embedment	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)
	in. (mm)	Ib (kN)							
3/8-16 UNC	4-3/8	5,280	5,900	6,465	6,985	10,555	11,800	12,925	13,965
	(110)	(23.5)	(26.2)	(28.8)	(31.1)	(47.0)	(52.5)	(57.5)	(62.1)
1/2-13 UNC10	5	6,395	7,150	7,830	9,040	12,785	14,295	15,660	18,080
	(125)	(28.4)	(31.8)	(34.8)	(40.2)	(56.9)	(63.6)	(69.7)	(80.4)
5/8-11 UNC10	6-3/4	10,140	11,335	12,420	14,340	20,280	22,675	24,835	28,680
	(170)	(45.1)	(50.4)	(55.2)	(63.8)	(90.2)	(100.9)	(110.5)	(127.6)
3/4-10 UNC10	8-1/8	13,425	15,010	16,445	18,990	26,855	30,025	32,890	37,975
	(205)	(59.7)	(66.8)	(73.1)	(84.5)	(119.5)	(133.5)	(146.3)	(168.9)

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 50-51 as necessary to the above values. Compare to the steel values in table 49. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130 (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete or water-saturated concrete conditions. For water-filled drilled holes multiply design strength by 0.52.

For submerged (under water) applications multiply design strength by 0.46.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by  $\lambda_a$  as follows:

For sand-lightweight,  $\lambda_a = 0.51$ . For all-lightweight,  $\lambda_a = 0.45$ .

9 Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. Diamond core drilling is not permitted in cracked concrete except as indicated in note 10.

10 Diamond core drilling is permitted in cracked concrete with use of the Hilti TE-YRT roughening tool for 1/2-13 UNC, 5/8-11 UNC, and 3/4-10 UNC anchors in dry and water-saturated concrete. See Table 84.

11 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values by  $\alpha_{seis} = 0.75$ . See section 3.1.8 for additional information on seismic applications.

## Table 82 - Hilti HIT-RE 500 V3 design information with Hilti HIS-N and HIS-RN internally threaded inserts in core drilled holes roughened with the TE-YRT Roughening Tool in accordance with CSA A23.3-14 Annex D¹

Desig		O make al	Linite	Nominal b	olt/cap screw dia	ameter (in.)	Ref
Desig	n parameter	Symbol	Units	1/2	5/8	3/4	A23.3-14
HIS ir	sert outside diameter	D	mm	20.5	25.4	27.6	
Effect	ive embedment ²	h _{ef}	mm	125	170	205	
Min. c	oncrete thickness ²	h _{min}	mm	170	230	270	
Critica	al edge distance	Cac	-		2h _{ef}		
Minim	um edge distance	C _{min}	mm	102	127	140	
Minim	um anchor spacing	S _{min}	mm	102	127	140	
Coeff	for factored conc. breakout resistance, uncracked concrete	k ³	-		10		D.6.2.2
Coeff	for factored conc. breakout resistance, cracked concrete	k _{c.cr} ³	-		7		D.6.2.2
Conci	ete material resistance factor	Φ	-		0.65		8.4.2
Resis Cond	ance modification factor for tension and shear, concrete failure modes, tion $B^{s}$	R _{conc}	-		1.00		D.5.3(c)
	Dry and water s	aturated of	concrete	•			•
22	Characteristic band stress in stacked constate ⁶⁷	-	psi	750	750	750	Desa
np. e⊿	Characteristic bond stress in cracked concrete "	Cr	(MPa)	(5.2)	(5.2)	(5.2)	D.0.5.2
Ter ang	Characteristic hand stress in unercalked concrete ⁶⁷	-	psi	1,790	1,790	1,790	Desa
2		uncr	(MPa)	(12.3)	(12.3)	(12.3)	D.0.5.2
22	Characteristic band stress in succlud consucts ⁶⁷	_	psi	515	515	515	Dera
e E		Cr	(MPa)	(3.6)	(3.6)	(3.6)	D.0.5.2
Ter ang	Characteristic band stress in unarracked constrate ⁶⁷	-	psi	1,240	1,240	1,240	Desa
2		uncr	(MPa)	(8.6)	(8.6)	(8.6)	D.0.5.2
Ancho	or category, dry concrete	-	-	1	1	1	
Resis	ance modification factor	R _{drv}	-	1.00	1.00	1.00	
Redu	ction for seismic tension	α _{N,seis}	-	1.00	1.00	1.00	

1 Design information in this table is taken from ICC-ES ELC-3814, dated April 2018,, table 29, and converted for use with CSA A23.3-14 Annex D.

2 See figure 8 of section 3.2.4.3.6.

3 For all design cases,  $\psi_{c,N} = 1.0$ . The appropriate coefficient for breakout resistance for cracked concrete ( $k_{c,cr}$ ) or uncracked concrete ( $k_{c,uncr}$ ) must be used.

4 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

5 Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Bond stress values correspond to concrete compressive strength in the range 2,500 psi  $\leq f'_{c} \leq 8,000$  psi.

7 For structures assigned to Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by an North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, or F, bond stress values must be multiplied by a North Seismic Design Categories C, D, E, o

*



## Table 83 - Hilti HIT-RE 500-V3 adhesive core drilled and roughened with TE-YRT Roughening Tool factored resistance with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete^{1,2,3,4,5,6,7,8}

			Tensi	on N _r			She	ar V _r	
Thread size	Effective	f′ _c = 20 MPa	f´ _c = 25 MPa	f´ _c = 30 MPa	f´ _c = 40 MPa	f´ _c = 20 MPa	f´ _c = 25 MPa	f´ _c = 30 MPa	f´ _c = 40 MPa
	embedment	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)
	in. (mm)	Ib (kN)							
1/2-13 UNC	5	9,135	10,210	11,185	12,915	18,265	20,420	22,370	25,830
	(125)	(40.6)	(45.4)	(49.8)	(57.5)	(81.3)	(90.8)	(99.5)	(114.9)
5/8-11 UNC	6-3/4	14,485	16,195	17,740	20,485	28,970	32,390	35,480	40,970
	(170)	(64.4)	(72.0)	(78.9)	(91.1)	(128.9)	(144.1)	(157.8)	(182.2)
3/4-10 UNC	8-1/8	19,180	21,445	23,490	27,125	38,360	42,890	46,985	54,255
	(205)	(85.3)	(95.4)	(104.5)	(120.7)	(170.6)	(190.8)	(209.0)	(241.3)

## Table 84 - Hilti HIT-RE 500 V3 adhesive core drilled and roughened with TE-YRT Roughening Tool factored resistance with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete^{1,2,3,4,5,6,7,8,9}

			Tensi	ion N _r			She	ar V _r	
Thread size	Effective embedment in. (mm)	f′ = 20 MPa (2,900 psi) Ib (kN)	f´ _c = 25 MPa (3,625 psi) Ib (kN)	f´ _c = 30 MPa (4,350 psi) Ib (kN)	f´ _c = 40 MPa (5,800 psi) Ib (kN)	f´ _c = 20 MPa (2,900 psi) Ib (kN)	f´ _c = 25 MPa (3,625 psi) Ib (kN)	f´ _c = 30 MPa (4,350 psi) Ib (kN)	f´ _c = 40 MPa (5,800 psi) Ib (kN)
1/2-13 UNC	5	6,105	6,105	6,105	6,105	12,215	12,215	12,215	12,215
	(125)	(27.2)	(27.2)	(27.2)	(27.2)	(54.3)	(54.3)	(54.3)	(54.3)
E /0 11 LINIC	6-3/4	10,140	10,255	10,255	10,255	20,280	20,505	20,505	20,505
5/8-11 UNC	(170)	(45.1)	(45.6)	(45.6)	(45.6)	(90.2)	(91.2)	(91.2)	(91.2)
3/4-10 UNC	8-1/8	13,425	13,475	13,475	13,475	26,855	26,955	26,955	26,955
	(205)	(59.7)	(59.9)	(59.9)	(59.9)	(119.5)	(119.9)	(119.9)	(119.9)

1 See Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Apply spacing, edge distance, and concrete thickness factors in tables 50 - 51 as necessary to the above values. Compare to the steel values in table 49. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.69. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete or water-saturated concrete conditions. Water-filled and submerged (under water) applications are not permitted for this hole preparation method.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by  $\lambda_a$  as follows:

For sand-lightweight, λ_a = 0.51. For all-lightweight, λ_a = 0.45.
9 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values by α_{seis} = 0.75. See section 3.1.8 for additional information on seismic applications.

### Table 85 - Steel factored resistance for steel bolt/cap screw for Hilti HIS-N and HIS-RN internally threaded inserts^{1,2,3}

*

		ASTM A193 B7		ASTM A	193 Grade B8M Stainle	ess Steel
Thread size	Tensile⁴ N _{sar} Ib (kN)	Shear ⁵ V _{sar} Ib (kN)	Seismic Shear ⁶ V _{sar,eq} Ib (kN)	Tensile⁴ N _{sar} Ib (kN)	Shear ⁵ V _{sar} Ib (kN)	Seismic Shear ⁶ V _{sar,eq} Ib (kN)
3/8-16 UNC	5,765	3,215	2,250	5,070	2,825	1,975
	(25.6)	(14.3)	(10.0)	(22.6)	(12.6)	(8.8)
1/2-13 UNC	9,635	5,880	4,115	9,290	5,175	3,620
	(42.9)	(26.2)	(18.3)	(41.3)	(23.0)	(16.1)
5/8-11 UNC	16,020	9,365	6,555	14,790	8,240	5,770
	(71.3)	(41.7)	(29.2)	(65.8)	(36.7)	(25.7)
3/4-10 UNC	16,280	13,860	9,700	21,895	12,195	8,535
	(72.4)	(61.7)	(43.1)	(97.4)	(54.2)	(38.0)

1 See Section 3.1.8 to convert design strength value to ASD value.

2 Hilti HIS-N and HIS-RN inserts with steel bolts are considered brittle steel elements.

3 Table values are the lesser of steel failure in the HIS-N insert or inserted steel bolt.

4 Tensile =  $A_{se,N} \phi_s f_{uta} R$  as noted in CSA A23.3-14 Annex D

5 Shear =  $A_{se,V} \phi_s 0.60 f_{uta} R$  as noted in CSA A23.3-14 Annex D. For 3/8-in diameter insert, shear =  $A_{se,V} \phi_s 0.50 f_{uta} R$ .

6 Seismic Shear =  $\alpha_{V,seis} V_{sar}$ : Reduction factor for seismic shear only. See section 3.1.8 for additional information on seismic applications.

### POST-INSTALLED REBAR DESIGN IN CONCRETE PER ACI 318

#### 3.2.4.3.8 Development and splicing of post-installed reinforcement

Calculations for post-installed rebar for typical development lengths may be done according to ACI 318-14 Chapter 25 (formerly ACI 318-11 Chapter 12) and CSA A23.3-14 Chapter 12 for adhesive anchors tested and approved in accordance with AC 308. This section contains tables for the data provided in ICC Evaluation Services ESR-3814. Refer to section 3.1.14 and the Hilti North America Post-Installed Reinforcing Bar Guide for the design method.

#### *f*′_c = 3,000 psi f'_ = 4,000 psi *f*′_c = 6,000 psi f'_ = 2,500 psi min. min. Class B Class B Class B Class B c_b + K_{tr} Rebar edge dist. spacing splice splice splice splice $\ell_{d}$ $\ell_{d}$ $\ell_{d}$ $\ell_{d}$ size d, in.1 in.2 in. in. in. in. in. in. in. in. #3 2 - 1/42 12 14 12 13 12 12 12 12 14 13 17 12 #4 2-3/4 2 - 1/219 12 15 12 #5 3 3-1/4 18 23 16 21 14 18 12 15 3-3/4 22 28 26 17 22 14 18 3-3/4 20 #6 2.5 #7 4-1/2 4 - 1/232 41 29 37 25 32 20 26 47 33 43 #8 5 5 36 28 37 23 30 5-1/4 5-3/4 41 53 37 48 32 42 26 34 #9 #10 5-3/4 6-1/2 46 59 42 54 36 47 30 38

## Table 86 - Calculated tension development and Class B Splice lengths for Grade 60 bars in walls, slabs, columns, and footings per ACI 318-14 Chapter 25 for Hilti HIT-RE 500 V3

1 Edge distances are determined using the minimum cover specified by ESR-3814 with an additional 6% of the development length per suggestions for drilling without an aid per Hilti Post-Installed Reinforcing Bar Guide Section 3.3. Smaller edge distances may be possible, for which development and splice lengths may need to be recalculated. For further information on required cover see ACI 318-14, Sec. 20.6.1.3.1; see Sec. 2.2 for determination of c_n.

2 Spacing values represent those producing c_b =5 d_b rounded up to the nearest 1/4 in. Smaller spacing values may be possible, for which development and splice lengths may need to be recalculated. For further information on required spacing see ACI 318-14 Sec. 25.2; see Sec. 2.2 for determination of c_b.

3 ψ = 1.0 See ACI 318-14, Sec. 25.4.2.4.

4  $\psi_e$  = 1.0 for non-epoxy coated bars. See ACI 318-14, Sec. 25.4.2.4.

5  $\psi_{e}$  = 0.8 for #6 bars and smaller bars, 1.0 for #7 and larger bars. See ACI 318-14, Sec. 25.4.2.4.

6 Values are for normal weight concrete. For sand-lightweight concrete, multiply development and splice lengths by 1.18, for all-lightweight concrete multiply development and splice lengths by 1.33. See ACI 318-14 Sec. 19.2.4.

7 Development and splice length values are for static design. Seismic design development and splice lengths can be found in ACI 318-14 18.8.5 for special moment frames and ACI 318-14 18.10.2.3 for special structural walls. For further information about reinforcement in seismic design, see ACI 318-14 Ch. 18.

8 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples.

3.2.3



### Table 87 - Suggested embedment, edge distance, and spacing (see figure below) to develop 125% of $f_y$ in Grade 60 bars based on ACI 318-14 Chapter 17 - SDC A and B only^{1,2,3,4,5,6,7}

		f' _c = 2,	500 psi			f' _c = 3,	000 psi			$f'_{c} = 4,$	000 psi			f' _c = 6,	000 psi	
		Mini edge	mum e dist			Minimum edge dist				Minii edge	mum e dist			Minii edge	mum e dist	
	Effective embed.	ii	,min <b>1.</b>	Min.	Effective embed.	c _{a,min} in.		Min.	Effective embed.	ir	,min <b>).</b>	Min.	Effective embed.	ir	,min <b>).</b>	Min.
Rebar size	h _{ef} in.	Cond. I	Cond. II	s _{min} in.	h _{ef} in.	Cond. I	Cond. II	s _{min} in.	h _{ef} in.	Cond. I	Cond. II	s _{min} in.	h _{ef} in.	Cond. I	Cond. II	s _{min} in.
#3	7	17	8	15	6	16	7	14	6	16	7	13	5	15	6	11
#4	9	23	11	22	9	23	11	21	8	22	10	19	7	20	9	17
#5	11	29	15	29	11	28	14	28	10	27	13	25	9	25	11	22
#6	13	35	19	37	13	34	18	35	12	32	16	32	11	30	14	28
#7	16	41	23	45	15	40	22	43	14	38	20	39	13	36	17	34
#8	18	48	27	54	17	46	26	51	16	44	24	47	15	42	21	41
#9	21	56	32	63	20	54	30	60	18	50	27	54	17	47	24	48
#10	25	65	37	74	24	63	35	70	22	58	32	64	19	54	28	56

1 For additional information see May-June 2013 issue of the ACI Structural Journal, "Recommended Procedures for Development and Splicing of Post-Installed Bonded Reinforcing Bars in Concrete Structures" by Charney, Pal and Silva.

2 h_{et} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Bond stresses apply for sustained and non-sustained load conditions. Additional reductions per ACI 318-14, 17.3.1.2 are not included, however, and as such these embedments are not intended for sustained tension load applications. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the unbolded and bolded tabulated hef values by 0.80 and 0.86, respectively. Reduction factors for non-sustained loading and no bar overstrength may be combined.

3 c_a and s are the minimum edge distance and bar spacing (from bar centerline) associated with the tabulated embedments. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."

4 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.

5 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3814 Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.

6 Values are for normal weight concrete. For lightweight concrete contact Hilti.

7 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.



Illustration of Table 84 dimensions

### Table 88 - Suggested embedment and edge distance (see figure below) based on ACI 318-14 Chapter 17 to develop 125% of $f_{,i}$ in Grade 60 wall/column starter bars in a linear array with bar spacing = 24 inches - SDC A and B only^{1,2,3,4,5,6}

,		f	' _c = 2,500 p	si	f	_c = 3,000 p	si	f	_c = 4,000 p	si	f	_c = 6,000 p	si
			Minii edge	mum e dist		Minii edge	mum e dist		Minii edge	mum e dist		Minii edge	mum e dist
	Linear	Effective embed.	c _a ir	,min <b>1.</b>	Effective embed.	C _a ir	min 1.	Effective embed.	c _a ir	min <b>).</b>	Effective embed.	c _{a,} ir	min 1.
Rebar size	spacing embe bebar s h _{ef} size in. in.		Cond. I	Cond. II	h _{ef} in.	Cond. I	Cond. II	h _{ef} in.	Cond. I	Cond. II	h _{ef} in.	Cond. I	Cond. II
#3		7	17	8	6	16	7	6	16	7	5	15	6
#4	]	9	23	11	9	23	11	8	22	10	7	20	9
#5	24	13	34	19	11	30	17	10	27	13	9	25	11
#6		21	57	32	19	51	28	15	43	23	11	32	17
#7		-	-	-	-	-	-	24	66	35	18	52	27

1 h_{ef} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14.4 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated hef values by 0.86.

2 c_a is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 24 in. Refer to sec. 3.1.14.3 for applicability of edge distance "Condition I" and "Condition II."

3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.

4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3814 Tables 12 and 13 assuming dry concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.

5 Values are for normal weight concrete. For lightweight concrete contact Hilti.

6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for detailed explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.



Illustration of Table 85 dimensions



### Table 89 - Suggested embedment and edge distance (see figure below) based on ACI 318-14 Chapter 17 to develop 125% of fy in Grade 60 wall/column starter bars in a linear array with bar spacing = 18 inches - SDC A and B only^{1,2,3,4,5,6}

		f	_c = 2,500 p	si	f	_c = 3,000 p	si	f	_c = 4,000 p	si	f	_c = 6,000 p	si
	Linear	Effective embed.	Minii edge c _a ir	mum e dist 	Effective embed.	Minii edge c _a ir	mum e dist ^{min}	Effective embed.	Minii edge c _a ir	mum e dist ^{min}	Effective embed.	Minir edge c _{a,} ir	mum e dist ^{min} 1.
Rebar size	s in.	h _{ef} in.	Cond. I	Cond. II	h _{ef} in.	Cond. I	Cond. II	h _{ef} in.	Cond. I	Cond. II	h _{ef} in.	Cond. I	Cond. II
#3		7	17	8	6	16	7	6	16	7	5	15	6
#4	18	10	26	14	9	23	13	8	22	10	7	20	9
#5		-	-	-	-	-	-	13	36	19	10	28	14

1 h_{et} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14.4 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated hef values by 0.86.

2 c_a is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 18 in. Refer to sec. 3.1.14.3 for applicability of edge distance "Condition I" and "Condition II."

3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.

- 4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3814 Tables 12 and 13 assuming dry concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.
- 5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
- 6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for detailed explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.



Illustration of Table 86 dimensions

### Table 90 - Suggested embedment and edge distance (see figure below) based on ACI 318-14 Chapter 17 to develop 125% of $f_{...}$ in Grade 60 wall/column starter bars in a linear array with bar spacing = 12 inches - SDC A and B only^{1,2,3,4,5,6}

y		-				-	-	-				-	
		f	' _c = 2,500 p	osi	f	_c = 3,000 p	si	f	_c = 4,000 p	si	f	_c = 6,000 p	si
	Linear Effective C _{a,min}					Minii edge	mum e dist		Mini edge	mum e dist		Minir edge	num e dist
	Linear	Effective embed.	C _a il	,min <b>1.</b>	Effective embed.	C _a ir	,min <b>).</b>	Effective embed.	C _a ii	,min <b>1.</b>	Effective embed.	c _{a,} ir	min 1.
Rebar size	s in.	h _{ef} in.	Cond. I	Cond. II	h _{ef} in.	Cond. I	Cond. II	h _{ef} in.	Cond. I	Cond. II	h _{ef} in.	Cond.	Cond. II
#3	12 7	17	10	6	16	9	6	16	7	5	15	6	
#4	1 12	-	-	-	-	-	-	11	31	16	8	24	12

1 h_{ef} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14.4 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated hef values by 0.86.

2 c_a is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 12 in. Refer to sec. 3.1.14.3 for applicability of edge distance "Condition I" and "Condition II."

3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.

4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3814 Tables 12 and 13 assuming dry concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.

5 Values are for normal weight concrete. For lightweight concrete contact Hilti.

6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for detailed explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.



Illustration of Table 87 dimensions

3.2.3



## Table 91 - Calculated tension development and Class B Splice lengths for Canadian 400 MPa bars in walls, slabs, columns, and footings per CSA 23.3-14 for Hilti HIT-RE 500 V3 - non-seismic design only^{3,4,5,6,7,8}

				f' _c = 20 MPa		f' _c = 2	5 MPa	f' _c = 3	0 MPa	f' _c = 4	0 MPa
Rebar size	d _{cs} + K _{tr}	min. edge dist. mm ¹	min. spacing mm²	ℓ _d mm	Class B splice mm	ℓ _d mm	Class B splice mm	ℓ _d mm	Class B splice mm	ℓ _d mm	Class B splice mm
10M		60	50	300	380	300	340	300	310	300	300
15M		70	75	410	540	370	480	340	440	300	380
20M	2.5 d _b	80	100	510	660	450	490	410	540	360	460
25M	]	120	125	820	1,060	730	950	670	870	580	750
30M		130	150	960	1,250	860	1,120	790	1,020	680	890

1 Edge distances are determined using the minimum cover specified by ESR-3184 with an additional 6% of the development length per suggestions for drilling without an aid per Hilti Post-Installed Reinforcing Bar Guide Section 3.3. Smaller edge distances may be possible, for which development and splice lengths may need to be recalculated. For further information on required cover see CSA A23.1-14 Table 17; see Sec. 3.2 for determination of d_{res}.

2 Spacing values represent those producing d_{cs} = 5d_b. Smaller spacing values may be possible, for which development and splice lengths may need to be recalculated. For further information on required spacing see CSA A23.1 Sec. 6.6.5.2; see Sec. 3.2 for determination of d_{cs}.

3 k, and k, as defined by CSA A23.3-14 12.2.4 (a) and (b), are taken as 1.0 for post-installed reinforcing bars. For additional information see May-June 2013 issue of the ACI Structural Journal, "Recommended Procedures for Development and Splicing of Post-Installed Bonded Reinforcing Bars in Concrete Structures" by Charney, Pal and Silva.

4  $k_4 = 0.8$  for 20M bars and smaller bars, 1.0 for 25M and larger bars. See CSA A23.3-14 12.2.4 (d).

5  $K_{tr}$  is assumed to equal zero.

6 Values are for normal weight concrete. For lightweight concrete, multiply development and splice lengths by 1.3.

7 Development and splice length values are for static design. For tension development and splice lengths of bars in joints, see CSA A23.3-14 21.3.3.5. For further information about reinforcement in seismic design, see CSA A23.3-14 Ch. 21.

8 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples.

	f′ _c = 20 MPa					f' _c = 2	5 MPa			f′ _c = 3	0 MPa			f' _c = 4	0 MPa	
		Minii edge	mum e dist			Minimum edge dist				Minii edge	mum e dist			Minii edge	mum e dist	
	Effective embed.	C _{a,} ir	,min <b>1.</b>	Min. spacing	Effective embed.	e c _{a,min} in.		Min. spacing	Effective embed.	C _a ir	,min <b>1.</b>	Min. spacing	Effective embed.	C _a ir	min 1.	Min. spacing
Rebar size	h _{ef} mm	Cond. I	Cond. II	s _{min} mm	h _{ef} mm	Cond. I	Cond. II	s _{min} mm	h _{ef} mm	Cond. I	Cond. II	s _{min} mm	h _{ef} mm	Cond. I	Cond. II	s _{min} mm
10M	180	480	220	440	170	470	200	400	160	450	190	380	150	430	180	350
15M	260	690	350	690	240	670	320	640	230	650	300	600	220	620	280	550
20M	310	850	450	900	300	820	420	840	280	800	400	790	270	760	360	720
25M	420	1,140	630	1,260	400	1,080	590	1,170	380	1,050	560	1,110	350	1,000	500	1,000
30M	530	1,420	790	1,580	490	1,340	740	1,470	460	1,280	690	1,380	420	1,200	630	1,260

Table 92 - Suggested embedment, edge distance, and spacing (see figure below) to develop 125% of f_y in Canadian 400 MPa bars based on CSA 23.3-14 Annex D - non-seismic design only^{1,2,3,4,5,6,7}

1 For additional information see May-June 2013 issue of the ACI Structural Journal, "Recommended Procedures for Development and Splicing of Post-Installed Bonded Reinforcing Bars in Concrete Structures" by Charney, Pal and Silva.

2 h_{af} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14.3 to develop 125% of nominal bar yield. Bond stresses apply for sustained and non-sustained load conditions. Additional reductions per ACI 318-14, 17.3.1.2 are not included, however, and as such these embedments are not intended for sustained tension load applications. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the unbolded and bolded tabulated hef values by 0.80 and 0.86, respectively. Reduction factors for non-sustained loading and no bar overstrength may be combined.

3 c_a and s are the minimum edge distance and bar spacing (from bar centerline) associated with the tabulated embedments. Refer to sec. 3.1.14.3 for applicability of edge distance "Condition I" and "Condition II."

4 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.

5 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3814 Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.

6 Values are for normal weight concrete. For lightweight concrete contact Hilti.

7 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.



Illustration of Table 89 dimensions

3.2.3



## Table 93 - Suggested embedment and edge distance (see figure below) based on CSA 23.3 Annex D to develop 125%

		f	′ _c = 20 MP	a	f	′ _c = 25 MP	a	f	′ _c = 30 MP	a	f	′ _c = 40 MP	a
			Minii edge c	mum e dist		Minii edge c	mum e dist		Minii edge c	mum e dist		Minii edge c	mum e dist
	Linear	Effective embed.	m	m	Effective embed.	m	m	Effective embed	m	m	Effective embed	m	m
Rebar	S	h _{ef}	Cond.	Cond.	h _{ef}	Cond.	Cond.	h _{ef}	Cond.	Cond.	h _{ef}	Cond.	Cond.
size	mm	mm	I	II	mm	I	II	mm	I	II	mm	I	II
10M		180	480	220	170	470	200	160	450	190	150	430	180
15M	600	280	760	420	240	670	350	230	650	300	220	620	280
20M		-	-	-	430	1,220	650	380	1,080	570	310	890	460

1 h_{et} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14.4 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated hef values by 0.86.

2 c_a is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 600 mm. Refer to sec. 3.1.14.3 for applicability of edge distance "Condition I" and "Condition II."

4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3814, Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.

5 Values are for normal weight concrete. For lightweight concrete contact Hilti.

6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.



Illustration of Table 90 dimensions

Table 94 - Suggested embedment and edge distance (see figure below) based on CSA 23.3 Annex D to develop 125% f, in Canadian 400 MPa wall/column starter bars in a linear array with bar spacing = 450 mm - non-seismic only^{1,2,3,4,5,6}

		<i>f</i> ′ _c = 20 МРа			f′ _c = 25 МРа			<i>f</i> ′ _c = 30 MPa			<i>f</i> ′ _c = 40 MPa		
			Mini edge	mum e dist		Minimum edge dist			Minimum edge dist			Minimum edge dist	
	Linear	Effective	c _a m	,min I <b>M</b>	Effective	c _a m	,min M	Effective	c _a m	,min I <b>M</b>	Effective	c _a m	^{min}
Rebar	S	h _{ef}	Cond.	Cond.	h _{ef}	Cond.	Cond.	h _{ef}	Cond.	Cond.	h _{ef}	Cond.	Cond.
SIZE	111111	11011	1		11111	1		11111	1	11	11111	1	"
10M	450	180	480	220	170	470	200	160	450	190	150	430	180
15M	400	400	1,090	590	340	950	510	300	840	440	240	690	360

1 h_{ef} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14.4 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated hef values by 0.86.

2 c_a is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 450 mm. Refer to sec. 3.1.14.3 for applicability of edge distance "Condition I" and "Condition II."

4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3814, Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.

5 Values are for normal weight concrete. For lightweight concrete contact Hilti.

6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.



Illustration of Table 91 dimensions

177

3.2.3



## Table 95 - Suggested embedment and edge distance (see figure below) based on CSA 23.3 Annex D to develop 125%

		<i>f</i> ′ _c = 20 MPa			f' _c = 25 MPa			<i>f</i> ′ _c = 30 MPa			<i>f</i> ′ _c = 40 MPa		
			Minimum edge dist		Minimum edge dist			Minimum edge dist			Minimum edge dist		
	Linear	Effective	c _{a,min} mm		Effective	c _{a,min} mm		Effective	c _{a,min} mm		Effective	c _{a,min} mm	
Rebar size	s s mm	h _{ef} mm	Cond. I	Cond. II	h _{ef} mm	Cond. I	Cond. II	h _{ef} mm	Cond. I	Cond. II	h _{ef} mm	Cond. I	Cond. II
10M	300	240	650	350	200	560	300	180	500	260	160	450	210

1 h_{et} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14.4 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated hef values by 0.86.

2 c_a is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 300 mm. Refer to sec. 3.1.14.3 for applicability of edge distance "Condition I" and "Condition II."

4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3814, Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.

5 Values are for normal weight concrete. For lightweight concrete contact Hilti.

6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.





### INSTALLATION INSTRUCTIONS

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www.hilti.com. Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

### MATERIAL SPECIFICATIONS



Figure 9 - Hilti HIT-RE 500 V3 adhesive cure and working time (approx.)

≥ +5 °C / 41 °F

 $\hat{\mathbf{s}}_{\mathbf{s}}$ 

Table 96 - Resistance of cured
Hilti HIT-RE 500 V3 to chemicals

Chemicals tested	Content (%)	Resistance
toluene	47.5	
iso-octane	30.4	
heptane	17.1	+
methanol	3	
butanol	2	
toluene	60	
xylene	30	+
methylnaphthalene	10	
diesel	100	+
petrol	100	+
methanol	100	-
dichloromethane	100	-
mono-chlorobenzene	100	•
ethylacetat	50	
methylisobutylketone	50	+
salicylic acid-methylester	50	
mcetophenon	50	+
acetic acid	50	
propionic acid	50	-
sulfuric acid	100	-
nitric acid	100	-
hyrdocholoric acid	36	-
potassium hydroxide	100	-
sodium hydroxide 20%	100	-
triethanolamine	50	
butylamine	50	-
benzyl alcohol	100	
ethanol	100	
ethyl acetate	100	-
methyl ethly ketone (MEK)	100	
trichlorethylene	100	
lutensit TC KLC 50	3	
marlophen NP 9,5	2	+
water	95	
tetrahydrofurane	100	-
demineralized water	100	+
salt water	saturated	+
salt spray testing	-	+
SO2	-	+
environment/weather	-	+
oil for formwork (forming oil)	100	+
concrete plasticizer	-	+
concrete drilling mud	-	+
concrete potash solution	-	+
saturated suspension of bore- hole cuttings	-	+

+ Resistant

Partially resistant

Not resistant

3.2.3



#### **ORDERING INFORMATION**



#### HIT-RE 500 V3

Description	Package contents	Qty		
HIT-RE 500 V3 (11.1 fl oz/330 ml)	Includes (1) foil pack with (1) mixer and 3/8 filler tube per pack	1		
HIT-RE 500 V3 Master Carton (11.1 fl oz/330 ml)	Includes (1) master carton containing (25) foil packs with (1) mixer and 3/8			
	filler tube per pack			
HIT-RE 500 V3 Combo (11.1 fl oz/330 ml)	Includes (1) master carton containing (25) foil packs with (1) mixer and 3/8	25		
	filler tube per pack and (1) HDM 500 Manual Dispenser			
HIT-RE 500 V3 Master Carton (16.9 fl oz/500 ml)	Includes (1) master carton containing (20) foil packs with (1) mixer and 3/8	20		
	filler tube per pack			
HIT-RE 500 V3 Combo (16.9 fl oz/500 ml)	Includes (2) master cartons containing (20) foil packs each with (1) mixer	40		
	and 3/8 filler tube per pack and (1) HDM 500 Manual Dispenser			
HIT-RE 500 V3 (47.3 fl oz/1400 ml)	Includes (4) foil packs with (1) mixer and 3/8 filler tube per pack	4		
HIT-RE 500 V3 Pallet (47.3 fl oz/1400 ml)	Includes (64) foil packs with (1) mixer and 3/8 filler tube per pack and (1)	64		
	P800 Pneumatic Dispenser			
HIT-RE 500 V3 TE-CD Starter Package	Includes foil packs, dispensers, vacuum, hammer drill and various drill bit	40		
	sizes. Contact Hilti for exact package contents.			
HIT-RE 500 V3 TE-YD Starter Package	Includes foil packs, dispensers, vacuum, hammer drill and various drill bit	40		
	sizes. Contact Hilti for exact package contents.			
HIT-BE-M Static Mixer For use with HIT-BE 500 V3 cartridges				

#### **TE-YRT Roughening Tool**

ditte

Order description	Description	Length
TE-YRT 7/8" x 15"	Roughening tool for use with 3/4" diameter threaded rod in core drilled	15"
	holes	
TE-YRT 1-1/8" x 20	Roughening tool for use with 1" diameter threaded rod in core drilled holes	20"
TE-YRT 1-3/8" x 25"	Roughening tool for use with 1-1/4" diameter threaded rod in core drilled holes	25"
RTG 7/8"	Roughening tool gauge for TE-YRT 7/8"	
RTG 1-1/8"	Roughening tool gauge for TE-YRT 1-1/8"	
RTG 1-3/8"	Roughening tool gauge for TE-YRT 1-3/8"	

#### **TE-CD Hollow Drill Bits**

	Working
Order description	length
Hollow Drill Bit TE-CD 1/2" x 13"	8"
Hollow Drill Bit TE-CD 9/16" x 14"	9-1/2"
Hollow Drill Bit TE-CD 5/8" x 14"	9-1/2"
Hollow Drill Bit TE-CD 3/4" x 14"	9-1/2"



#### **TE-YD Hollow Drill Bits** Order description Hollow drill bit TE-YD 5/8" x 24" Hollow drill bit TE-YD 3/4" x 24" Hollow drill bit TE-YD 7/8" x 24" Hollow drill bit TE-YD 1" x 24" Hollow drill bit TE-YD 1-1/8" x 24" Hollow drill bit TE-YD 5/8" x 35" Hollow drill bit TE-YD 3/4" x 35" Hollow drill bit TE-YD 7/8" x 35"

Anchor Fastening Technical Guide Edition 19 | 3.0 ANCHORING SYSTEMS | 3.2.3 HIT-RE 500 V3 EPOXY ADHESIVE ANCHORING SYSTEM Hilti, Inc. (U.S.) 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.com | 1-800-363-4458

Working

length

15-3/4"

15-3/4"

15-3/4"

15-3/4"

15-3/4"

26"

26"

26"

26"

39"