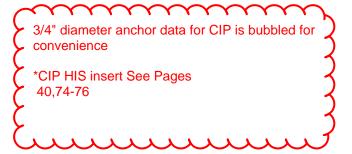


The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 19.


Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines.

US&CA: https://submittals.us.hilti.com/PTGVoI2/

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST.

US: 877-749-6337 or HNATechnicalServices@hilti.com

CA: 1-800-363-4458, ext. 6 or CATechnicalServices@hilti.com

3.2.2 HIT-HY 200 ADHESIVE ANCHORING SYSTEM PRODUCT DESCRIPTION

HIT-HY 200 with HIT-Z rods, Threaded Rod, Rebar, and HIS-N/RN Inserts

Anchor System		Features and Benefits
W 200-M 155 IST IN 200 M 155 IST IN 200 M 155 IST IN 2	Hilti HIT-HY 200-R Cartridge	 Two great products with equal performance data User can select product gel time suitability based on temperature of the base material and jobsite time requirements No hole cleaning requirement when installed SafeSet™ hollow drill bit technology
TTI HILTI HILTI HILT	Hilti HIT-HY 200-A Cartridge	No hole cleaning requirement when installing
	Hilti HIT-Z Anchor Rod	May be installed in diamond cored holes with HIT-Z anchor rod only when addition cleaning steps are employed
Annum	Hilti HAS Threaded Rod	ICC-ES approved for grout-filled concrete masonry
	Hilti HIS-N/RN	
		PROFIS
Uncracked concrete Cracked concrete masonry	Seismic Design Diamo holes for and Ui	nd cored Hollow Drill Bit Profis Anchor design software create
concrete concrete concrete masonry	Seismic Design Diamo holes for and Ui	nd cored Hollow Drill Bit Profis Anchor or Cracked design softwar ncracked
Approvals/Listings ICC-ES (International Code Council)	Seismic Design Diamo categories A-F holes for and Ur	nd cored Hollow Drill Bit Profis Anchor design softwar design softwar ncracked ncrete 818-14 Ch. 17 / ACI 355.2/ ICC-ES AC308 per ICC-ES AC58
concrete concrete masonry Approvals/Listings	Seismic Design Categories A-F Diamo holes fo and Ui Coi ESR-3187 in concrete per ACI 3 ESR-3963 in grout-filled CMU p	nd cored Hollow Drill Bit Profis Anchor Cracked design software cracked increase the state of th
Approvals/Listings ICC-ES (International Code Council)	ESR-3187 in concrete per ACI 3 ESR-3963 in grout-filled CMU p ELC-3187 in concrete per CSA Certification for use in potable ETA-11/0492, ETA-11/0493 ETA-12/0006, ETA-12/0028 ETA-12/0083, ETA-12/0084	and cored Hollow Drill Bit Profis Anchor Cracked design softward neracked nerete B18-14 Ch. 17 / ACI 355.2/ ICC-ES AC308 B18-14 Ch. 17 / ACI 355.2/ ICC-ES AC308 B18-14 / ACI 355.2 B18-14 / ACI 355.2
Approvals/Listings ICC-ES (International Code Council) NSF/ANSI Std 61	ESR-3187 in concrete per ACI 3 ESR-3963 in grout-filled CMU p ELC-3187 in concrete per CSA Certification for use in potable ETA-11/0492, ETA-11/0493 ETA-12/0006, ETA-12/0028 ETA-12/0083, ETA-12/0084 City of Los Angeles 2017 LABC	and cored Hollow Drill Bit Profis Anchor Cracked design software cracked increased inc
Approvals/Listings ICC-ES (International Code Council) NSF/ANSI Std 61 European Technical Approval City of Los Angeles	Seismic Design Diamo holes for and Un Control of Contro	nd cored Hollow Drill Bit Profis Anchor Cracked design software cracked increased incr
Approvals/Listings ICC-ES (International Code Council) NSF/ANSI Std 61 European Technical Approval	ESR-3187 in concrete per ACI 3 ESR-3963 in grout-filled CMU p ELC-3187 in concrete per CSA Certification for use in potable ETA-11/0492, ETA-11/0493 ETA-12/0006, ETA-12/0028 ETA-12/0083, ETA-12/0084 City of Los Angeles 2017 LABC	and cored Hollow Drill Bit Profis Ancho design softwa ncracked ncrete B18-14 Ch. 17 / ACI 355.2/ ICC-ES AC308 B18-14 Ch. 17 /

322

MATERIAL SPECIFICATIONS

For material specifications for anchor rods and inserts, please refer to section 3.2.8.

DESIGN DATA IN CONCRETE PER ACI 318

ACI 318-14 Chapter 17 design

The load values contained in this section are Hilti Simplified Design Tables. The load tables in this section were developed using the Strength Design parameters and variables of ESR-3187 and the equations within ACI 318-14 Chapter 17. For a detailed explanation of the Hilti Simplified Design Tables, refer to section 3.1.8. Data tables from ESR-3187 are not contained in this section, but can be found at www.icc-es.org or at www.hilti.com.

HIT-HY 200 adhesive with HIT-Z and HIT-Z-R anchor rods

Figure 1 - Hilti HIT-Z and HIT-Z-R installation conditions

Permissible crete conditions	Uncracked Dry concrete	ble drilling thod	Hammer drilling with carbide tipped drill bit ¹ Hilti TE-CD or TE-YD Hollow
Perm concrete	Cracked concrete Water-saturated concrete	Permissibl meth	Drill Bit ² Diamond core drill bit ³

- 1 Anchor may be installed in a hole drilled with a carbide-tipped bit without cleaning the drilling dust from the hole. Temperature must be 41° F or higher. Drilling dust must be removed from the hole if the temperature is below 41° F. See Manufacturer's Published Installation Instructions (MPII).
- 2 When temperatures are below 41° F, TE-CD or TE-YD Hollow Drill Bits used with a Hilti vacuum cleaner are viable methods for removing drilling dust from the hole.
- 3 Holes drilled by diamond coring require cleaning with a wire brush, a water hose and compressed air. See MPII.

Table 1 - Specifications for Hilti HIT-Z and HIT-Z-R installed with Hilti HIT-HY 200 adhesive

Catting information		Cumbal	Lloita	Non	ninal and	hor dian	neter
Setting information		Symbol	Units	3/8	1/2	5/8	3/4
Nominal bit diamete	r	d _o	in.	7/16	9/16	3/4	7/8
	minimum	h	in.	2-3/8	2-3/4	3-3/4	4
Effective	minimum	h _{ef,min}	(mm)	(60)	(70)	(95)	(102)
embedment	maximum	h	in.	4-1/2	6	7-1/2	8-1/2
	maximum	h _{ef,max}	(mm)	(114)	(152)	(190)	(216)
Diameter	through-set		in.	1/2	5/8	13/16¹	15/16¹
of fixture hole	preset		in.	7/16	9/16	11/16	13/16
Installation torque		_	ft-lb	15	30	60	110
Installation torque		T _{inst}	(Nm)	(20)	(40)	(80)	(150)

¹ Install using (2) washers. See Figure 3.

Figure 2 - Hilti HIT-Z and HIT-Z-R specfications

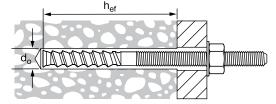


Figure 3 - Installation with (2) washers

Table 2 - Hilti HIT-Z and HIT-Z-R anchor rod length and thread dimension

	Anchor length		$\ell_{ ext{helix}}$ Helix length		Smooth leng		Total ti lenç		Usable lenç		HIT-Z
Size	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	Length Code
3/8 x 3-3/8	3-3/8	(111)	2-1/4	(57)	5/16	(8)	1-13/16	(46)	1-5/16	(33)	D
3/8 x 4-3/8	4-3/8	(111)	2-1/4	(57)	5/16	(8)	1-13/16	(46)	1-5/16	(33)	F
3/8 x 5-1/8	5-1/8	(130)	2-1/4	(57)	5/16	(8)	2-9/16	(65)	2-1/16	(52)	Н
3/8 x 6-3/8	6-3/8	(162)	2-1/4	(57)	5/16	(8)	3-13/16	(97)	3-5/16	(84)	J
1/2 x 4-1/2	4-1/2	(114)	2-1/2	(63)	5/16	(8)	1-11/16	(43)	1	(26)	F
1/2 x 6-1/2	6-1/2	(165)	2-1/2	(63)	5/16	(8)	3-11/16	(94)	3-1/16	(77)	J
1/2 x 7-3/4	7-3/4	(197)	2-1/2	(63)	5/16	(8)	4-15/16	(126)	4-5/16	(109)	М
5/8 x 6	6	(152)	3-5/8	(92)	7/16	(11)	1-15/16	(49)	1-1/8	(28)	I
5/8 x 8	8	(203)	3-5/8	(92)	7/16	(11)	3-15/16	(100)	3-1/8	(79)	М
5/8 x 9-1/2	9-1/2	(241)	3-5/8	(92)	1-15/16	(49)	3-15/16	(100)	3-1/8	(79)	Р
3/4 x 6-1/2	6-1/2	(165)	4	(102)	5/16	(8)	2	(51)	1	(26)	K
3/4 x 8-1/2	8-1/2	(216)	4	(102)	7/16	(12)	4	(102)	3-1/16	(77)	N
3/4 x 9-3/4	9-3/4	(248)	4	(102)	1-11/16	(44)	4	(102)	3-1/16	(77)	Q

Figure 4 - Hilti HIT-Z and HIT-Z-R anchor rod length and thread dimension

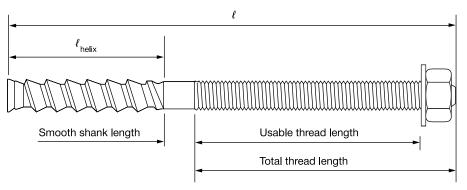


Table 3 - Hilti HIT-HY 200 design strength with concrete/pullout failure for Hilti HIT-Z(-R) rods in uncracked concrete^{1,2,3,4,5,6,7,8,9,10}

		_		411				417	
Nominal			Iension	— ФN _п			Shear	— ΦV _n	
anchor diameter in.	Effective embed. in. (mm)	f' = 2,500 psi (17.2 MPa) lb (kN)	f' = 3,000 psi (20.7 MPa) lb (kN)	f' = 4,000 psi (27.6 MPa) lb (kN)	f' = 6,000 psi (41.4 MPa) lb (kN)	f' = 2,500 psi (17.2 MPa) lb (kN)	f' = 3,000 psi (20.7 MPa) lb (kN)	f' = 4,000 psi (27.6 MPa) lb (kN)	f' = 6,000 psi (41.4 MPa) lb (kN)
	2-3/8	2,855	3,125	3,610	4,425	3,075	3,370	3,890	4,765
	(60)	(12.7)	(13.9)	(16.1)	(19.7)	(13.7)	(15.0)	(17.3)	(21.2)
3/8	3-3/8	4,835	5,170	5,170	5,170	10,415	11,410	13,175	16,135
3/0	(86)	(21.5)	(23.0)	(23.0)	(23.0)	(46.3)	(50.8)	(58.6)	(71.8)
	4-1/2	5,170	5,170	5,170	5,170	16,035	17,570	20,285	24,845
	(114)	(23.0)	(23.0)	(23.0)	(23.0)	(71.3)	(78.2)	(90.2)	(110.5)
	2-3/4	3,555	3,895	4,500	5,510	7,660	8,395	9,690	11,870
	(70)	(15.8)	(17.3)	(20.0)	(24.5)	(34.1)	(37.3)	(43.1)	(52.8)
1/2	4-1/2	7,445	7,615	7,615	7,615	16,035	17,570	20,285	24,845
1/2	(114)	(33.1)	(33.9)	(33.9)	(33.9)	(71.3)	(78.2)	(90.2)	(110.5)
	6	7,615	7,615	7,615	7,615	24,690	27,045	31,230	38,250
	(152)	(33.9)	(33.9)	(33.9)	(33.9)	(109.8)	(120.3)	(138.9)	(170.1)
	3-3/4	5,665	6,205	7,165	8,775	12,200	13,365	15,430	18,900
	(95)	(25.2)	(27.6)	(31.9)	(39.0)	(54.3)	(59.5)	(68.6)	(84.1)
5/8	5-5/8	10,405	11,400	13,165	13,905	22,415	24,550	28,350	34,720
3/0	(143)	(46.3)	(50.7)	(58.6)	(61.9)	(99.7)	(109.2)	(126.1)	(154.4)
	7-1/2	13,905	13,905	13,905	13,905	34,505	37,800	43,650	53,455
	(191)	(61.9)	(61.9)	(61.9)	(61.9)	(153.5)	(168.1)	(194.2)	(237.8)
	4	6,240	6,835	7,895	9,665	13,440	14,725	17,000	20,820
	(102)	(27.8)	(30.4)	(35.1)	(43.0)	(59.8)	(65.5)	(75.6)	(92.6)
3/4	6-3/4	13,680	14,985	17,305	18,500	29,460	32,275	37,265	45,645
0/4	(171)	(60.9)	(66.7)	(77.0)	(82.3)	(131.0)	(143.6)	(165.8)	(203.0)
	8-1/2	18,500	18,500	18,500	18,500	41,635	45,605	52,660	64,500
	(216)	(82.3)	(82.3)	(82.3)	(82.3)	(185.2)	(202.9)	(234.2)	(286.9)

Table 4 - Hilti HIT-HY 200 design strength with concrete/pullout failure for Hilti HIT-Z(-R) rods in cracked concrete^{1,2,3,4,5,6,7,8,9,10}

Nominal			Tension	ı — ФN _п			Shear	— ФV _п	
Nominal anchor diameter in. 3/8 1/2 5/8	Effective embed. in. (mm)	f' = 2,500 psi (17.2 MPa) lb (kN)	f' = 3,000 psi (20.7 MPa) lb (kN)	f' = 4,000 psi (27.6 MPa) lb (kN)	f' = 6,000 psi (41.4 MPa) lb (kN)	f' = 2,500 psi (17.2 MPa) lb (kN)	f' = 3,000 psi (20.7 MPa) lb (kN)	f' = 4,000 psi (27.6 MPa) lb (kN)	f' = 6,000 psi (41.4 MPa) lb (kN)
	2-3/8	2,020	2,215	2,560	3,135	2,180	2,385	2,755	3,375
	(60)	(9.0)	(9.9)	(11.4)	(13.9)	(9.7)	(10.6)	(12.3)	(15.0)
3 /8	3-3/8	3,425	3,755	4,335	5,170	7,380	8,085	9,335	11,430
3/0	(86)	(15.2)	(16.7)	(19.3)	(23.0)	(32.8)	(36.0)	(41.5)	(50.8)
	4-1/2	5,170	5,170	5,170	5,170	11,360	12,445	14,370	17,600
	(114)	(23.0)	(23.0)	(23.0)	(23.0)	(50.5)	(55.4)	(63.9)	(78.3)
	2-3/4	2,520	2,760	3,185	3,905	5,425	5,945	6,865	8,405
	(70)	(11.2)	(12.3)	(14.2)	(17.4)	(24.1)	(26.4)	(30.5)	(37.4)
1/2	4-1/2	5,275	5,780	6,670	7,110	11,360	12,445	14,370	17,600
1/2	(114)	(23.5)	(25.7)	(29.7)	(31.6)	(50.5)	(55.4)	(63.9)	(78.3)
	6	7,110	7,110	7,110	7,110	17,490	19,160	22,120	27,095
	(152)	(31.6)	(31.6)	(31.6)	(31.6)	(77.8)	(85.2)	(98.4)	(120.5)
	3-3/4	4,010	4,395	5,075	6,215	8,640	9,465	10,930	13,390
	(95)	(17.8)	(19.5)	(22.6)	(27.6)	(38.4)	(42.1)	(48.6)	(59.6)
5/8	5-5/8	7,370	8,075	9,325	11,420	15,875	17,390	20,080	24,595
0/0	(143)	(32.8)	(35.9)	(41.5)	(50.8)	(70.6)	(77.4)	(89.3)	(109.4)
	7-1/2	11,350	12,430	13,905	13,905	24,440	26,775	30,915	37,865
	(191)	(50.5)	(55.3)	(61.9)	(61.9)	(108.7)	(119.1)	(137.5)	(168.4)
	4	4,420	4,840	5,590	6,845	9,520	10,430	12,040	14,750
	(102)	(19.7)	(21.5)	(24.9)	(30.4)	(42.3)	(46.4)	(53.6)	(65.6)
3/4	6-3/4	9,690	10,615	12,255	15,010	20,870	22,860	26,395	32,330
0/4	(171)	(43.1)	(47.2)	(54.5)	(66.8)	(92.8)	(101.7)	(117.4)	(143.8)
	8-1/2	13,690	15,000	17,320	18,155	29,490	32,305	37,300	45,685
	(216)	(60.9)	(66.7)	(77.0)	(80.8)	(131.2)	(143.7)	(165.9)	(203.2)

Section 3.1.8 for explanation on development of load values.

See Section 3.1.8 to convert design strength value to ASD value.

Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Apply spacing, edge distance, and concrete thickness factors in tables 10 - 17 as necessary to the above values. Compare to the steel values in table 5. The lesser of the values is to be used for the design.

Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 1.0.

For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above values by 0.90.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time.

Tabular values are for dry and water saturated concrete conditions.

Tabular values are for short-term loads only. For sustained loads, see section 3.1.8.

Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by λ_n as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.

Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension only by the following reduction factors:

^{3/8-}in diameter - $\alpha_{N,seis}$ = 0.705 1/2-in to 3/4-in diameter - $\alpha_{N,seis}$ = 0.75

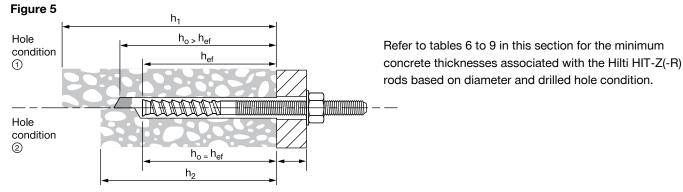
See Section 3.1.8 for additional information on seismic applications.

¹⁰ Diamond core drilling with Hilti HIT-Z(-R) rods is permitted with no reduction in published data above.

Table 5 - Steel design strength for Hilti HIT-Z and HIT-Z-R rods 1,2

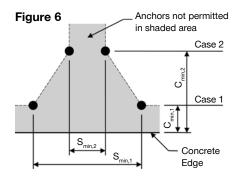
	ACI 318-14 Chapter 17 Based Design											
	ŀ	HIT-Z carbon steel ro	d	HIT-Z-R stainless steel rod								
Nominal anchor diameter in.	Tensile³	Shear ⁴	Seismic Shear ⁵	Tensile³	Shear ⁴	Seismic Shear ⁵						
	φN _{sa}	φV _{sa}	φV _{sa,eq}	φN _{sa}	φV _{sa}	φV _{sa,eq}						
	Ib (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	Ib (kN)						
3/8	4,750	1,930	1,930	4,750	2,630	2,630						
	(21.1)	(8.6)	(8.6)	(21.1)	(11.7)	(11.7)						
1/2	8,695	3,530	2,295	8,695	4,815	3,610						
	(38.7)	(15.7)	(10.2)	(38.7)	(21.4)	(16.1)						
5/8	13,850	5,625	3,655	13,850	7,670	4,985						
	(61.6)	(25.0)	(16.3)	(61.6)	(34.1)	(22.2)						
3/4	20,455	8,310	5,400	20,455	11,330	7,365						
	(91.0)	(37.0)	(24.0)	(91.0)	(50.4)	(32.8)						

- 1 See section 3.1.8 to convert design strength value to ASD value.
- 2 HIT-Z and HIT-Z-R rods are to be considered brittle steel elements.
- 3 Tensile = $\phi A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17.
- 4 Shear values determined by static shear tests with $\phi V_{sa} \le \phi \ 0.60 \ A_{se,V} f_{uta}$ as noted in ACI 318-14 Chapter 17.
- 5 Seismic Shear = α_{Vests} φ_{Ves}: Reduction for seismic shear only. See section 3.1.8 for additional information on seismic applications.


Hilti HIT-Z(-R) rod permissible combinations of edge distance, anchor spacing, and concrete thickness

The Hilti HIT-Z and HIT-Z-R anchor rods produce higher expansion forces in the concrete slab when the installation torque is applied. This means that the anchor must be installed with larger edge distances and spacing when compared to standard threaded rod, to minimize the likelihood that the concrete slab will split during installation.

The permissible edge distance is based on the concrete condition (cracked or uncracked), the concrete thickness, and anchor spacing if designing for anchor groups. The permissible concrete thickness is dependent on whether or not the drill dust is removed during the anchor installation process.


Step 1: Check concrete thickness

When using Hilti HIT-Z and HIT-Z-R anchor rods, drilling dust does not need to be removed for optimum capacity when base material temperatures are greater than 41° F (5° C) and a hammer drill with a carbide tipped drill bit is used. However, concrete thickness can be reduced if the drilling dust is removed. The figure below shows both drilled hole conditions. Drilled hole condition 1 illustrates the hole depth and concrete thickness when drilling dust is left in the hole. Drilled hole condition 2 illustrates the corresponding reduction when drill dust is removed by using compressed air, Hilti TE-CD or TE-YD Hollow Drill Bits with a Hilti vacuum.

Step 2: Check edge distance and anchor spacing

Tables 6 to 9 in this section show the minimum edge distance and anchor spacing based on a specific concrete thickness and whether or not the design is for cracked or uncracked concrete. There are two cases of edge distance and anchor spacing combinations for each embedment and concrete condition (cracked or uncracked). **Case 1** is the minimum edge distance needed for one anchor or for two anchors with large anchor spacing. **Case 2** is the minimum anchor spacing that can be used, but the edge distance is increased to help prevent splitting. Linear interpolation can be used between **Case 1** and **Case 2** for any specific concrete thickness and concrete condition. See the following figure and calculation which can be used to determine specific edge distance and anchor spacing combinations.

For a specific edge distance, the permitted spacing is calculated as follows:

$$s \ge s_{min,2} + \frac{(s_{min,1} - s_{min,2})}{(c_{min,1} - c_{min,2})} (c - c_{min,2})$$

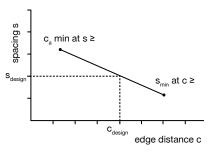


Table 6 - Minimum edge distance, spacing, and concrete thickness for 3/8-in. diameter Hilti HIT-Z and HIT-Z-R rods1

Nomi	nal anchor diameter	d	in.					3/8				
F" .			in.		2-3/8			3-3/8			4-1/2	
Епест	ive embedment	h _{ef}	(mm)		(60)			(86)			(114)	
Drilled	d hole condition	-	-	2 ²	1 (or 2	2 ²	1 0	or 2	2 ²	1 0	or 2
Minim	num concrete thickness	h	in. (mm)	4 (102)	4-5/8 (117)	5-3/4 (146)	4-5/8 (117)	5-5/8 (143)	6-3/8 (162)	5-3/4 (146)	6-3/4 (171)	7-3/8 (187)
ete	Minimum edge and	C min,1	in. (mm)	3-1/8 (79)	2-3/4 (70)	2-1/4 (57)	2-3/4 (70)	2-1/4 (57)	2 (51)	2-1/4 (57)	1-7/8	1-7/8
Uncracked concrete	spacing Case 1	S min,1	in. (mm)	9-1/8 (232)	7-3/4 (197)	6-1/8 (156)	7-3/4 (197)	6-1/2 (165)	5-5/8 (143)	6-1/8 (156)	5-3/8 (137)	4-1/2 (114)
acked	Minimum edge and	C min,2	in. (mm)	5-5/8 (143)	4-3/4 (121)	3-3/4 (95)	4-3/4 (121)	3-7/8	3-1/4 (83)	3-3/4 (95)	3-1/8 (79)	2-3/4 (70)
Unc	spacing Case 2	S min,2	in. (mm)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)
ate	Minimum edge and	C min,1	in. (mm)	2-1/8 (54)	1-7/8 (48)							
concre	spacing Case 1	S min,1	in. (mm)	6-3/8 (162)	5-1/2 (140)	4-1/4 (108)	5-1/2 (140)	3-1/2 (89)	2-5/8 (67)	3-1/4 (83)	2 (51)	1-7/8 (48)
Cracked concrete	Minimum edge and	C min,2	in. (mm)	3-5/8 (92)	3-1/8 (79)	2-3/8 (60)	3-1/8 (79)	2-1/2 (64)	2-1/8 (54)	2-3/8 (60)	(51)	1-7/8 (48)
ö	spacing Case 2	S min,2	in. (mm)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)	1-7/8 (48)

Table 7 - Minimum edge distance, spacing, and concrete thickness for 1/2-in. diameter Hilti HIT-Z and HIT-Z-R rods¹

Nomir	nal anchor diameter	d	in.					1/2				
E#4		_	in.		2-3/4			4-1/2			6	
Епест	ive embedment	h _{ef}	(mm)		(70)			(114)			(152)	
Drilled	hole condition	-	-	2 ²	1 c	r 2	2 ²	1 c	or 2	2 ²	1 0	or 2
Minim	um concrete thickness	h	in.	4	5	7-1/8	5-3/4	6-3/4	8-1/4	7-1/4	8-1/4	9-3/4
101111111	- Idin Concrete trickness	''	(mm)	(102)	(127)	(181)	(146)	(171)	(210)	(184)	(210)	(248)
Ф	Minimum edge and		in.	5-1/8	4-1/8	2-7/8	3-5/8	3	2-1/2	2-7/8	2-1/2	2-1/2
iet	spacing	C _{min,1}	(mm)	(130)	(105)	(73)	(92)	(76)	(64)	(73)	(64)	(64)
ouc	Case 1		in.	14-7/8	11-7/8	8-5/8	10-1/4	9	7-1/4	8-1/8	7-1/4	5
ŏ	Case I	S min,1	(mm)	(378)	(302)	(219)	(260)	(229)	(184)	(206)	(184)	(127)
Š	Minimum adds and		in.	9-1/4	7-1/4	4-7/8	6-1/4	5-1/4	4-1/8	4-3/4	4-1/8	3-3/8
rac	Minimum edge and spacing Case 1 Minimum edge and spacing Case 2	C min,2	(mm)	(235)	(184)	(124)	(159)	(133)	(105)	(121)	(105)	(86)
2	spacing	_	in.	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2
	Case 2	S min,2	(mm)	(64)	(64)	(64)	(64)	(64)	(64)	(64)	(64)	(64)
	Minimum adds and		in.	3-5/8	3	2-1/2	2-5/8	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2
ete	Minimum edge and	C min,1	(mm)	(92)	(76)	(64)	(67)	(64)	(64)	(64)	(64)	(64)
JC.	spacing	_	in.	10-7/8	8-1/2	6	7-3/8	5-1/2	3-1/8	4-1/2	3-1/8	2-1/2
Ö	Case 1	S min,1	(mm)	(276)	(216)	(152)	(187)	(140)	(79)	(114)	(79)	(64)
Cracked Concrete	Minimum adda and		in.	6-1/2	5	3-1/4	4-1/4	3-1/2	2-3/4	3-1/4	2-3/4	2-1/2
Š	Minimum edge and	C _{min,2}	(mm)	(165)	(127)	(83)	(108)	(89)	(70)	(83)	(70)	(64)
ö	spacing		in.	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2
	Case 2	S min,2	(mm)	(64)	(64)	(64)	(64)	(64)	(64)	(64)	(64)	(64)

¹ Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2. Linear interpoloation for a specific edge distance c, where $c_{min,1} < c < c_{min,2}$ will determine the permissible spacing s as follows:

$$s \ge s_{\min,2} + \frac{(s_{\min,1} - s_{\min,2})}{(c_{\min,1} - c_{\min,2})} (c - c_{\min,2})$$

 $2 \ \ \text{For shaded cells, drilling dust must be removed from drilled hole to justify minimum concrete thickness.}$

Table 8 - Minimum edge distance, spacing, and concrete thickness for 5/8-in. diameter Hilti HIT-Z and HIT-Z-R rods¹

Nomin	al anchor diameter	d	in.					5/8				
			in.		3-3/4			5-5/8			7-1/2	
Епеси	ve embedment	h _{ef}	(mm)		(95)			(143)			(191)	
Drilled	hole condition	-	-	2 ²	1 c	or 2	2 ²	1 c	r 2	2 ²	1 c	or 2
Minim	um concrete thickness	h	in.	5-1/2	7-3/4	9-3/8	7-3/8	9-5/8	10-1/2	9-1/4	11-1/2	12-1/4
IVIIIIIIII	uni concrete trickriess	!!	(mm)	(140)	(197)	(238)	(187)	(244)	(267)	(235)	(292)	(311)
0	Minimum edge and		in.	6-1/4	4-1/2	3-3/4	4-5/8	3-5/8	3-1/4	3-3/4	3-1/8	3-1/8
rete	_	C _{min,1}	(mm)	(159)	(114)	(95)	(117)	(92)	(83)	(95)	(79)	(79)
Suc	spacing		in.	18-3/8	12-7/8	10-5/8	13-7/8	10-3/8	9-3/4	10-7/8	8-3/8	7-3/8
ŏ	Case 1	S min,1	(mm)	(467)	(327)	(270)	(352)	(264)	(248)	(276)	(213)	(187)
Uncracked concrete	Minimum ada and		in.	11-3/8	7-3/4	6-1/4	8-1/4	6-1/8	5-1/2	6-3/8	4-7/8	4-5/8
iac	Minimum edge and	C min,2	(mm)	(289)	(197)	(159)	(210)	(156)	(140)	(162)	(124)	(117)
SH.	spacing		in.	3-1/8	3-1/8	3-1/8	3-1/8	3-1/8	3-1/8	3-1/8	3-1/8	3-1/8
_	Case 2	S min,2	(mm)	(79)	(79)	(79)	(79)	(79)	(79)	(79)	(79)	(79)
	Minimum adam and		in.	4-5/8	3-3/8	3-1/8	3-1/2	3-1/8	3-1/8	3-1/8	3-1/8	3-1/8
jte	Minimum edge and	C min,1	(mm)	(117)	(86)	(79)	(89)	(79)	(79)	(79)	(79)	(79)
Scre	spacing	_	in.	13-7/8	9-1/2	8-3/4	10-1/8	6-1/2	5-3/8	7-1/8	3-7/8	3-1/8
So	Case 1	S min,1	(mm)	(352)	(241)	(222)	(257)	(165)	(137)	(181)	(98)	(79)
eq	Minimum adam and	_	in.	8-1/4	5-1/2	4-3/8	5-7/8	4-1/4	3-7/8	4-1/2	3-3/8	3-1/8
Cracked concrete	Minimum edge and	C min,2	(mm)	(210)	(140)	(111)	(149)	(108)	(98)	(114)	(86)	(79)
Ö	spacing	_	in.	3-1/8	3-1/8	3-1/8	3-1/8	3-1/8	3-1/8	3-1/8	3-1/8	3-1/8
	Case 2	S min,2	(mm)	(79)	(79)	(79)	(79)	(79)	(79)	(79)	(79)	(79)

Table 9 - Minimum edge distance, spacing, and concrete thickness for 3/4-in. diameter Hilti HIT-Z and HIT-Z-R rods1

Nomir	nal anchor diameter	d	in.					3/4				
Effect	ive embedment	h _{ef}	in.		4			6-3/4			8-1/2	
LIICOL	ive embedment	' ef	(mm)		(102)			(171)			(216)	
Drillec	hole condition	-	-	2 ²	1 (or 2	2 ²	1 0	or 2	2 ²	1 (or 2
Minim	um concrete thickness	h	in. (mm)	5-3/4 (146)	8 (203)	11-1/2 (292)	8-1/2 (216)	10-3/4 (273)	13-1/8 (333)	10-1/4 (260)	12-1/2 (318)	14-1/2 (368)
ete	Minimum edge and	C _{min,1}	in. (mm)	9-3/4 (248)	7 (178)	5 (127)	6-5/8 (168)	5-1/4 (133)	4-1/4 (108)	5-1/2 (140)	4-1/2 (114)	4 (102)
concr	spacing Case 1	S min,1	in. (mm)	28-3/4 (730)	20-5/8 (524)	14 (356)	19-3/8 (492)	15-1/4 (387)	12-5/8 (321)	16 (406)	13-1/4 (337)	11 (279)
Uncracked concrete	Minimum edge and	C min,2	in. (mm)	18-1/8 (460)	12-5/8 (321)	8-1/2 (216)	11-7/8 (302)	9-1/8 (232)	7-1/4 (184)	9-5/8 (244)	7-3/4 (197)	6-1/2 (165)
Ono	spacing Case 2	S min,2	in. (mm)	3-3/4 (95)								
ste	Minimum edge and	C _{min,1}	in. (mm)	7-1/4 (184)	5-1/4 (133)	4-1/8 (105)	5 (127)	4 (102)	3-3/4 (95)	4-1/8 (105)	3-3/4 (95)	3-3/4 (95)
concre	spacing Case 1	S min,1	in. (mm)	21-3/4 (552)	15-1/2 (394)	12-1/4 (311)	14-1/2 (368)	11-3/8 (289)	9 (229)	12-1/8 (308)	8-3/4 (222)	6-1/2 (165)
Cracked concrete	Minimum edge and	C min,2	in. (mm)	13-1/4 (337)	9-1/4 (235)	6 (152)	8-5/8 (219)	6-5/8 (168)	5-1/8 (130)	7 (178)	5-1/2 (140)	4-1/2 (114)
Ö	spacing Case 2	S min,2	in. (mm)	3-3/4 (95)								

¹ Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2. Linear interpoloation for a specific edge distance c, where c_{min,1} < c < c_{min,2}, will determine the permissible spacing s as follows:

$$s \geq s_{\min,2} + \frac{(s_{\min,1} - s_{\min,2})}{(c_{\min,1} - c_{\min,2})} (c - c_{\min,2})$$

2 For shaded cells, drilling dust must be removed from drilled hole to justify minimum concrete thickness.

Table 10 - Load adjustment factors for 3/8-in. diameter Hilti HIT-Z and HIT-Z-R rods in uncracked concrete 1.2

													Edg	ge distar	nce in sh	near				
	-in. HIT-	` '	Spac	cing fact tension $f_{\scriptscriptstyle{\mathrm{AN}}}$	tor in		distance tension $f_{\scriptscriptstyle{RN}}$		Spac	oing fact shear _3	tor in	То	ward ed f_{RV}	ge		o and avoid for $f_{\rm RV}$			rete thic for in sh	
Embed	dment h _{ef}	in.	2-3/8	3-3/8	4-1/2	2-3/8 (60)	3-3/8	4-1/2 (114)	2-3/8	3-3/8	4-1/2	2-3/8	3-3/8	4-1/2 (114)	2-3/8 (60)	3-3/8	4-1/2 (114)	2-3/8	3-3/8	4-1/2
	1 7/0	(mm)	(60)	(86)	(114)	(/	(86)		(60)	(86)	(114)	(60)	(86)		(/	(86)		(60)	(86)	(114)
Ê	1-7/8	(48)	0.63	0.59	0.57	n/a	n/a	0.21	0.57	0.53	0.52	n/a	n/a	0.05	n/a	n/a	0.10	n/a	n/a	n/a
Ē	2	(51)	0.64	0.60	0.57	n/a	0.25	0.21	0.57	0.53	0.52	n/a	0.09	0.06	n/a	0.17	0.11	n/a	n/a	n/a
- in. (mm)	2-1/4	(57) (76)	0.66	0.61 0.65	0.58	0.38	0.26	0.22	0.58	0.54	0.53	0.33	0.10	0.07	0.38	0.21	0.13	n/a	n/a	n/a
Ē.	4	(102)	0.71	0.65	0.65	0.46	0.36	0.25	0.61	0.55	0.54	0.51	0.16	0.10	0.51	0.32	0.21	n/a 0.76	n/a n/a	n/a n/a
/ Edge distance $\left(c_{_{a}}\right)$ / Concrete thickness (h),	4-5/8	(102)	0.76	0.70	0.65	0.59	0.36	0.29	0.64	0.57	0.56	0.79	0.24	0.16	0.79	0.44	0.29	0.76	0.55	n/a
ü	4-5/6	(117)	0.85	0.75	0.67	0.69	0.40	0.33	0.68	0.58	0.56	1.00	0.34	0.20	1.00	0.49	0.33	0.84	0.55	n/a
호	5-3/4	(146)	0.83	0.73	0.09	0.74	0.43	0.36	0.00	0.59	0.57	1.00	0.34	0.22	1.00	0.52	0.36	0.64	0.61	0.53
e	6	(146)	0.90	0.78	0.71	0.89	0.49	0.38	0.70	0.59	0.57	1.00	0.42	0.27	1.00	0.59	0.38	0.91	0.63	0.53
cret	7	(178)	0.92	0.85	0.72	1.00	0.60	0.38	0.71	0.60	0.57	1.00	0.43	0.29	1.00	0.02	0.36	1.00	0.68	0.54
ĕ	8	(203)	1.00	0.90	0.76	1.00	0.60	0.43	0.79	0.63	0.60		0.69	0.37		0.72	0.43	1.00	0.00	0.63
0	9	(229)	1.00	0.90	0.83	 	0.03	0.49	0.79	0.65	0.61	-	0.83	0.43		0.03	0.49	1.00	0.72	0.66
(c_a)	10	(254)	1.00	0.94	0.87		0.77	0.61	0.86	0.66	0.61		0.03	0.63		1.00	0.63		0.77	0.70
9	11	(279)	1.00	1.00	0.07		0.00	0.67	0.89	0.68	0.63		1.00	0.03		1.00	0.03		0.85	0.70
tan	12	(305)		1.00	0.91		1.00	0.07	0.03	0.70	0.65		1.00	0.72			0.72		0.88	0.73
dis	14	(356)			1.00		1.00	0.75	1.00	0.73	0.67			1.00			1.00		0.96	0.83
ge	16	(406)		l	1.00	<u> </u>		0.03	1.00	0.76	0.70	 		1.00	 		1.00		1.00	0.88
Я	18	(457)						1.00		0.79	0.70								1.00	0.94
(s)	24	(610)				-		1.00		0.73	0.72	-			-					1.00
g	30	(762)								0.03	0.73									1.00
Spacing (s)	36	(914)				1				1.00	0.07	1			1					
တ္တ	> 48	(1219)								1.00	1.00									
	7 40	(1213)									1.00									

Table 11 - Load adjustment factors for 3/8-in. diameter Hilti HIT-Z and HIT-Z-R rods in cracked concrete 1,2

		Spacing factor in										Edg	ge distar	nce in sh	near					
	-in. HIT-2 ked con	, ,		cing fact tension $f_{\scriptscriptstyle{AN}}$	tor in		distance $f_{_{\mathrm{RN}}}$		Spac	cing fact shear 3	or in	То	ward ed $f_{_{\mathrm{RV}}}$	ge		o and avoing and $f_{\rm RV}$	•		rete thic tor in sh $f_{\scriptscriptstyle{\mathrm{HV}}}$	
Embed	lment h _{ef}	in. (mm)	2-3/8 (60)	3-3/8 (86)	4-1/2 (114)	2-3/8 (60)	3-3/8 (86)	4-1/2 (114)	2-3/8 (60)	3-3/8 (86)	4-1/2 (114)	2-3/8 (60)	3-3/8 (86)	4-1/2 (114)	2-3/8 (60)	3-3/8 (86)	4-1/2 (114)	2-3/8 (60)	3-3/8 (86)	4-1/2 (114)
	1-7/8	(48)	0.63	0.59	0.57	n/a	0.56	0.50	0.57	0.53	0.52	n/a	0.08	0.05	n/a	0.16	0.10	n/a	n/a	n/a
Ē	2	(51)	0.64	0.60	0.57	n/a	0.57	0.51	0.57	0.53	0.52	n/a	0.09	0.06	n/a	0.17	0.11	n/a	n/a	n/a
- in. (mm)	2-1/4	(57)	0.66	0.61	0.58	0.73	0.60	0.53	0.58	0.54	0.53	0.34	0.10	0.07	0.67	0.21	0.14	n/a	n/a	n/a
	3	(76)	0.71	0.65	0.61	0.88	0.70	0.60	0.61	0.55	0.54	0.52	0.16	0.10	0.88	0.32	0.21	n/a	n/a	n/a
Ē	4	(102)	0.78	0.70	0.65	1.00	0.84	0.70	0.64	0.57	0.55	0.80	0.25	0.16	1.00	0.49	0.32	0.76	n/a	n/a
ess	4-5/8	(117)	0.82	0.73	0.67		0.93	0.76	0.67	0.58	0.56	0.99	0.31	0.20		0.61	0.40	0.81	0.55	n/a
동	5	(127)	0.85	0.75	0.69		0.99	0.80	0.68	0.58	0.56	1.00	0.34	0.22		0.69	0.45	0.85	0.57	n/a
Ë	5-3/4	(146)	0.90	0.78	0.71		1.00	0.88	0.71	0.59	0.57		0.42	0.28		0.85	0.55	0.91	0.61	0.53
ete	6	(152)	0.92	0.80	0.72			0.91	0.71	0.60	0.57		0.45	0.29		0.91	0.59	0.93	0.63	0.54
ja Li	7	(178)	0.99	0.85	0.76			1.00	0.75	0.61	0.59		0.57	0.37		1.00	0.74	1.00	0.68	0.59
රි	8	(203)	1.00	0.90	0.80	ļ			0.79	0.63	0.60		0.70	0.45			0.91		0.72	0.63
	9	(229)		0.94	0.83				0.82	0.65	0.61		0.83	0.54			1.00		0.77	0.67
<u>о</u>	10	(254)		0.99	0.87	<u> </u>			0.86	0.66	0.62		0.97	0.63					0.81	0.70
anc anc	11	(279)		1.00	0.91				0.89	0.68	0.64		1.00	0.73					0.85	0.74
ist	12	(305)			0.94	ļ			0.93	0.70	0.65			0.83					0.89	0.77
g	14	(356)			1.00				1.00	0.73	0.67			1.00					0.96	0.83
ΕĠ	16	(406)				ļ				0.76	0.70								1.00	0.89
<u>~</u>	18	(457)								0.79	0.72									0.94
Spacing (s) / Edge distance (c $_{\mbox{\tiny g}}$ / Concrete thickness (h),	24	(610)								0.89	0.79									1.00
ğ	30	(762)								0.99	0.87									
Spa	36	(914)								1.00	0.94									
	> 48	(1219)									1.00									

¹ Linear interpolation not permitted.

² When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318 Chapter 17 or CSA A23.3 Annex D.

³ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$, f_{AV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$ then $f_{AV} = f_{AN}$.

⁴ Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{er}$. If $c \ge 3*h_{er}$, then $f_{HV} = 1.0$.

If a reduction factor value is in a shaded area, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with figure 6 and table 6 of this section to calculate permissible edge distance, spacing and concrete thickness combinations.

Table 12 - Load adjustment factors for 1/2-in. diameter Hilti HIT-Z and HIT-Z-R rods in uncracked concrete 1.2

													Edg	je distar	nce in sh	near				
1/2	in. HIT-2	Z(-R)			or in		distance n tensio		Spac	cing fact	tor in	То	⊥ ward ed	ge		o and av	•		rete thic or in sh	
uncra	cked co	ncrete		f_{AN}			f_{\scriptscriptstyleRN}			f_{\scriptscriptstyleAV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
Frebed	mant b	in.	2-3/4	4-1/2	6	2-3/4	4-1/2	6	2-3/4	4-1/2	6	2-3/4	4-1/2	6	2-3/4	4-1/2	6	2-3/4	4-1/2	6
EIIDec	ment h _{ef}	(mm)	(70)	(114)	(152)	(70)	(114)	(152)	(70)	(114)	(152)	(70)	(114)	(152)	(70)	(114)	(152)	(70)	(114)	(152)
	2-1/2	(64)	0.65	0.59	0.57	n/a	0.23	0.20	0.55	0.53	0.53	n/a	0.09	0.06	n/a	0.18	0.12	n/a	n/a	n/a
(mm)	2-7/8	(73)	0.67	0.61	0.58	0.35	0.24	0.21	0.56	0.54	0.53	0.22	0.11	0.07	0.35	0.22	0.15	n/a	n/a	n/a
Ξ.	3	(76)	0.68	0.61	0.58	0.36	0.25	0.21	0.56	0.54	0.53	0.23	0.12	0.08	0.36	0.24	0.15	n/a	n/a	n/a
. <u>⊑</u>	3-1/2	(89)	0.71	0.63	0.60	0.40	0.27	0.22	0.57	0.55	0.54	0.29	0.15	0.10	0.40	0.30	0.19	n/a	n/a	n/a
Ē,	4	(102)	0.74	0.65	0.61	0.44	0.29	0.24	0.58	0.55	0.54	0.36	0.18	0.12	0.44	0.33	0.24	0.58	n/a	n/a
Concrete thickness (h),	4-1/2	(114)	0.77	0.67	0.63	0.50	0.31	0.25	0.59	0.56	0.55	0.42	0.22	0.14	0.50	0.35	0.25	0.61	n/a	n/a
Кne	5	(127)	0.80	0.69	0.64	0.55	0.33	0.27	0.60	0.57	0.55	0.50	0.26	0.17	0.55	0.38	0.27	0.65	n/a	n/a
Pic Fi	5-1/2	(140)	0.83	0.70	0.65	0.61	0.35	0.28	0.62	0.57	0.56	0.57	0.30	0.19	0.61	0.40	0.28	0.68	n/a	n/a
ë	6	(152)	0.86	0.72	0.67	0.66	0.38	0.30	0.63	0.58	0.56	0.65	0.34	0.22	0.66	0.43	0.30	0.71	0.57	n/a
cre	7	(178)	0.92	0.76	0.69	0.77	0.43	0.33	0.65	0.59	0.57	0.82	0.42	0.28	0.82	0.49	0.33	0.77	0.61	n/a
Ğ	7-1/4	(184)	0.94	0.77	0.70	0.80	0.44	0.34	0.65	0.60	0.57	0.87	0.45	0.29	0.87	0.50	0.34	0.78	0.62	0.54
0	8	(203)	0.98	0.80	0.72	0.88	0.49	0.36	0.67	0.61	0.58	1.00	0.52	0.34	1.00	0.56	0.36	0.82	0.66	0.57
distance (c_a) /	9	(229)	1.00	0.83	0.75	0.99	0.55	0.40	0.69	0.62	0.59	1.00	0.62	0.40	1.00	0.63	0.40	0.87	0.70	0.60
ce	10	(254)	1.00	0.87	0.78	1.00	0.61	0.44	0.71	0.63	0.60	1.00	0.72	0.47	1.00	0.72	0.47	0.92	0.73	0.64
itar	11	(279)	1.00	0.91	0.81		0.67	0.48	0.73	0.65	0.61		0.84	0.54		0.84	0.54	0.96	0.77	0.67
흜	12	(305)	1.00	0.94	0.83	<u> </u>	0.73	0.53	0.75	0.66	0.62	<u> </u>	0.95	0.62		0.95	0.62	1.00	0.80	0.70
ge	14	(356)	1.00	1.00	0.89		0.85	0.62	0.79	0.69	0.64		1.00	0.78		1.00	0.78		0.87	0.75
Ĕ	16	(406)	1.00		0.94		0.98	0.70	0.83	0.72	0.66			0.95			0.95		0.93	0.80
(S)	18	(457)			1.00		1.00	0.79	0.88	0.74	0.68			1.00			1.00		0.98	0.85
ng	24	(610)						1.00	1.00	0.82	0.74								1.00	0.98
Spacing (s) / Edge	30	(762)								0.90	0.80									1.00
S	36	(914)								0.98	0.86									
	> 48	(1219)								1.00	0.98									

Table 13 - Load adjustment factors for 1/2-in. diameter Hilti HIT-Z and HIT-Z-R rods in Cracked Concrete 1,2

													Edg	je distar	nce in sh	ear				
1/2	-in. HIT-2	Z(-R)		cing fact tension	or in		distance n tensio		Spac	cing fact	or in	То	⊥ ward ed	ge		and av	•		rete thic	
crac	ked con	crete		f_{AN}			f_{\scriptscriptstyleRN}			f_{\scriptscriptstyleAV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
	lancant la	in.	2-3/4	4-1/2	6	2-3/4	4-1/2	6	2-3/4	4-1/2	6	2-3/4	4-1/2	6	2-3/4	4-1/2	6	2-3/4	4-1/2	6
Embed	lment h _{ef}	(mm)	(70)	(114)	(152)	(70)	(114)	(152)	(70)	(114)	(152)	(70)	(114)	(152)	(70)	(114)	(152)	(70)	(114)	(152)
	2-1/2	(64)	0.65	0.59	0.57	0.71	0.56	0.50	0.55	0.53	0.53	0.18	0.09	0.06	0.35	0.18	0.12	n/a	n/a	n/a
(mm)	2-7/8	(73)	0.67	0.61	0.58	0.77	0.59	0.53	0.56	0.54	0.53	0.22	0.11	0.07	0.44	0.23	0.15	n/a	n/a	n/a
Ξ.	3	(76)	0.68	0.61	0.58	0.79	0.60	0.53	0.56	0.54	0.53	0.23	0.12	0.08	0.47	0.24	0.16	n/a	n/a	n/a
. <u>⊑</u>	3-1/2	(89)	0.71	0.63	0.60	0.88	0.65	0.57	0.57	0.55	0.54	0.29	0.15	0.10	0.59	0.30	0.20	n/a	n/a	n/a
	4	(102)	0.74	0.65	0.61	0.98	0.70	0.60	0.58	0.55	0.54	0.36	0.18	0.12	0.72	0.37	0.24	0.58	n/a	n/a
SS (4-1/2	(114)	0.77	0.67	0.63	1.00	0.75	0.64	0.59	0.56	0.55	0.43	0.22	0.14	0.86	0.44	0.29	0.62	n/a	n/a
Ş.	5	(127)	0.80	0.69	0.64	1.00	0.80	0.67	0.61	0.57	0.55	0.50	0.26	0.17	1.00	0.52	0.34	0.65	n/a	n/a
亨	5-1/2	(140)	0.83	0.70	0.65	1.00	0.86	0.71	0.62	0.57	0.56	0.58	0.30	0.19	1.00	0.60	0.39	0.68	n/a	n/a
ē	6	(152)	0.86	0.72	0.67	1.00	0.91	0.75	0.63	0.58	0.56	0.66	0.34	0.22	1.00	0.68	0.44	0.71	0.57	n/a
cre	7	(178)	0.92	0.76	0.69	1.00	1.00	0.83	0.65	0.59	0.57	0.83	0.43	0.28	1.00	0.86	0.56	0.77	0.62	n/a
ĕ	7-1/4	(184)	0.94	0.77	0.70			0.85	0.65	0.60	0.57	0.88	0.45	0.29		0.90	0.59	0.78	0.63	0.54
0	8	(203)	0.98	0.80	0.72			0.91	0.67	0.61	0.58	1.00	0.52	0.34		1.00	0.68	0.82	0.66	0.57
(င်	9	(229)	1.00	0.83	0.75			1.00	0.69	0.62	0.59		0.62	0.41			0.81	0.87	0.70	0.60
ce	10	(254)	1.00	0.87	0.78				0.71	0.64	0.60		0.73	0.47			0.95	0.92	0.74	0.64
star	11	(279)	1.00	0.91	0.81				0.73	0.65	0.61		0.84	0.55			1.00	0.96	0.77	0.67
ë	12	(305)		0.94	0.83				0.75	0.66	0.62		0.96	0.62				1.00	0.81	0.70
ge	14	(356)		1.00	0.89				0.79	0.69	0.64		1.00	0.79					0.87	0.75
/ E	16	(406)			0.94				0.84	0.72	0.66			0.96					0.93	0.81
(S)	18	(457)			1.00				0.88	0.74	0.68			1.00					0.99	0.85
Spacing (s) / Edge distance $\left(c_{_{B}}\right)$ / Concrete thickness (h),	24	(610)	<u> </u>						1.00	0.82	0.74								1.00	0.99
aci	30	(762)								0.91	0.80									1.00
S	36	(914)	<u> </u>							0.99	0.87									
	> 48	(1219)								1.00	0.99									

¹ Linear interpolation not permitted.

² When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318 Chapter 17 or CSA A23.3 Annex D.

³ Spacing factor reduction in shear applicable when $c < 3^*h_{el^*} f_{AN^*}$ is applicable when edge distance, $c < 3^*h_{el^*}$. If $c \ge 3^*h_{el^*}$ then $f_{AV} = f_{AN^*}$.

4 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3^*h_{el^*}$. If $c \ge 3^*h_{el^*}$, then $f_{HV} = 1.0$.

If a reduction factor value is in a shaded area, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with figure 6 and table 7 of this section to calculate permissible edge distance, spacing and concrete thickness combinations.

Table 14 - Load adjustment factors for 5/8-in. diameter Hilti HIT-Z and HIT-Z-R rods in uncracked concrete 1,2

				Spacing factor in									Edg	ge distar	nce in sh	 iear				
,	-in. HIT-2 cked co	` '		cing fact tension $f_{\scriptscriptstyle{AN}}$			distance tension $f_{\scriptscriptstyle{RN}}$		Spac	sing fact shear 3	or in	То	ward ed $f_{\sf RV}$	ge		o and awon edg $f_{\scriptscriptstyle{RV}}$	•		rete thic tor in sh	
Embed	lment h _{ef}	in. (mm)	3-3/4 (95)	5-5/8 (143)	7-1/2 (191)	3-3/4 (95)	5-5/8 (143)	7-1/2 (191)	3-3/4 (95)	5-5/8 (143)	7-1/2 (191)	3-3/4 (95)	5-5/8 (143)	7-1/2 (191)	3-3/4 (95)	5-5/8 (143)	7-1/2 (191)	3-3/4 (95)	5-5/8 (143)	7-1/2 (191)
	3-1/8	(79)	0.64	0.59	0.57	n/a	n/a	0.20	0.55	0.54	0.53	n/a	n/a	0.07	n/a	n/a	0.13	n/a	n/a	n/a
Ê	3-1/4	(83)	0.64	0.60	0.57	n/a	0.24	0.20	0.55	0.54	0.53	n/a	0.11	0.07	n/a	0.21	0.14	n/a	n/a	n/a
- in. (mm)	3-3/4	(95)	0.67	0.61	0.58	0.34	0.25	0.21	0.56	0.54	0.53	0.23	0.13	0.09	0.34	0.27	0.17	n/a	n/a	n/a
	4	(102)	0.68	0.62	0.59	0.36	0.26	0.22	0.57	0.55	0.53	0.25	0.15	0.10	0.36	0.29	0.19	n/a	n/a	n/a
Ë,	5	(127)	0.72	0.65	0.61	0.42	0.29	0.24	0.58	0.56	0.54	0.36	0.21	0.13	0.42	0.38	0.24	n/a	n/a	n/a
SS	5-1/2	(140)	0.74	0.66	0.62	0.45	0.31	0.25	0.59	0.56	0.55	0.41	0.24	0.15	0.45	0.40	0.25	0.61	n/a	n/a
kne	6	(152)	0.77	0.68	0.63	0.49	0.33	0.26	0.60	0.57	0.55	0.47	0.27	0.18	0.49	0.42	0.26	0.63	n/a	n/a
Concrete thickness	7	(178)	0.81	0.71	0.66	0.57	0.36	0.29	0.62	0.58	0.56	0.59	0.34	0.22	0.59	0.47	0.29	0.68	n/a	n/a
je te	7-3/8	(187)	0.83	0.72	0.66	0.60	0.38	0.30	0.62	0.59	0.56	0.64	0.37	0.24	0.64	0.49	0.30	0.70	0.58	n/a
Cre	8	(203)	0.86	0.74	0.68	0.65	0.40	0.31	0.63	0.59	0.57	0.72	0.41	0.27	0.72	0.52	0.31	0.73	0.61	n/a
Š	9	(229)	0.90	0.77	0.70	0.73	0.45	0.34	0.65	0.60	0.58	0.86	0.50	0.32	0.86	0.58	0.34	0.78	0.65	n/a
	9-1/4	(235)	0.91	0.77	0.71	0.76	0.46	0.35	0.65	0.61	0.58	0.89	0.52	0.34	0.89	0.59	0.35	0.79	0.65	0.57
0	10	(254)	0.94	0.80	0.72	0.82	0.50	0.37	0.67	0.62	0.59	1.00	0.58	0.38	1.00	0.64	0.38	0.82	0.68	0.59
Š	11	(279)	0.99	0.83	0.74	0.90	0.55	0.39	0.68	0.63	0.60	1.00	0.67	0.43	1.00	0.70	0.43	0.86	0.71	0.62
lista	12	(305)	1.00	0.86	0.77	0.98	0.60	0.43	0.70	0.64	0.60	1.00	0.76	0.50	1.00	0.77	0.50	0.90	0.75	0.65
(s) / Edge distance ($c_{ m a}$) /	14	(356)	1.00	0.91	0.81	1.00	0.70	0.50	0.73	0.66	0.62		0.96	0.62		0.96	0.62	0.97	0.81	0.70
Б	16	(406)	1.00	0.97	0.86		0.80	0.57	0.77	0.69	0.64		1.00	0.76		1.00	0.76	1.00	0.86	0.75
<u>(6</u>	18	(457)	1.00	1.00	0.90		0.89	0.64	0.80	0.71	0.66			0.91			0.91		0.91	0.79
g S	24	(610)	1.00		1.00		1.00	0.86	0.90	0.78	0.71			1.00			1.00		1.00	0.91
Spacing	30	(762)						1.00	1.00	0.85	0.76									1.00
Sp	36	(914)								0.92	0.81									
	> 48	(1219)								1.00	0.92									

Table 15 - Load adjustment factors for 5/8-in. diameter Hilti HIT-Z and HIT-Z-R rods in cracked concrete 1,2

													Edg	ge distar	nce in sh	near				
5/8	-in. HIT-2	Z(-R)		cing fact tension	tor in		distance n tensio		Spac	cing fact	tor in	То	⊥ ward ed	ge		o and av	•		rete thic tor in sh	
crac	ked con	crete		f_{AN}			f_{RN}			f_{\scriptscriptstyleAV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
Embac	lment h	in.	3-3/4	5-5/8	7-1/2	3-3/4	5-5/8	7-1/2	3-3/4	5-5/8	7-1/2	3-3/4	5-5/8	7-1/2	3-3/4	5-5/8	7-1/2	3-3/4	5-5/8	7-1/2
LITIDEC	intent n _{ef}	(mm)	(95)	(143)	(191)	(95)	(143)	(191)	(95)	(143)	(191)	(95)	(143)	(191)	(95)	(143)	(191)	(95)	(143)	(191)
=	3-1/8	(79)	0.64	0.59	0.57	0.67	0.56	0.50	0.55	0.54	0.53	0.18	0.10	0.07	0.35	0.20	0.13	n/a	n/a	n/a
- in. (mm)	3-1/4	(83)	0.64	0.60	0.57	0.69	0.56	0.51	0.55	0.54	0.53	0.19	0.11	0.07	0.38	0.22	0.14	n/a	n/a	n/a
	3-3/4	(95)	0.67	0.61	0.58	0.75	0.60	0.53	0.56	0.54	0.53	0.23	0.13	0.09	0.47	0.27	0.17	n/a	n/a	n/a
	4	(102)	0.68	0.62	0.59	0.78	0.62	0.55	0.57	0.55	0.53	0.26	0.15	0.10	0.51	0.30	0.19	n/a	n/a	n/a
Ξ	5	(127)	0.72	0.65	0.61	0.91	0.70	0.60	0.58	0.56	0.54	0.36	0.21	0.13	0.72	0.41	0.27	n/a	n/a	n/a
ess	5-1/2	(140)	0.74	0.66	0.62	0.98	0.74	0.63	0.59	0.56	0.55	0.41	0.24	0.15	0.83	0.48	0.31	0.61	n/a	n/a
羟	6	(152)	0.77	0.68	0.63	1.00	0.78	0.66	0.60	0.57	0.55	0.47	0.27	0.18	0.94	0.54	0.35	0.64	n/a	n/a
Ē	7	(178)	0.81	0.71	0.66	1.00	0.87	0.72	0.62	0.58	0.56	0.59	0.34	0.22	1.00	0.68	0.44	0.69	n/a	n/a
ete	7-3/8	(187)	0.83	0.72	0.66	1.00	0.90	0.74	0.62	0.59	0.56	0.64	0.37	0.24	1.00	0.74	0.48	0.70	0.59	n/a
рĠ	8	(203)	0.86	0.74	0.68	1.00	0.96	0.78	0.63	0.59	0.57	0.73	0.42	0.27	1.00	0.84	0.54	0.73	0.61	n/a
ပိ	9	(229)	0.90	0.77	0.70	1.00	1.00	0.85	0.65	0.60	0.58	0.87	0.50	0.32	1.00	1.00	0.65	0.78	0.65	n/a
(e)	9-1/4	(235)	0.91	0.77	0.71			0.86	0.66	0.61	0.58	0.90	0.52	0.34			0.68	0.79	0.66	0.57
) e	10	(254)	0.94	0.80	0.72			0.91	0.67	0.62	0.59	1.00	0.58	0.38			0.76	0.82	0.68	0.59
anc	11	(279)	0.99	0.83	0.74			0.98	0.69	0.63	0.60		0.67	0.44			0.88	0.86	0.72	0.62
)ist	12	(305)	1.00	0.86	0.77			1.00	0.70	0.64	0.60		0.77	0.50			1.00	0.90	0.75	0.65
je [14	(356)	1.00	0.91	0.81				0.74	0.66	0.62		0.97	0.63			1.00	0.97	0.81	0.70
<u> </u>	16	(406)		0.97	0.86				0.77	0.69	0.64		1.00	0.77				1.00	0.86	0.75
<u>@</u>	18	(457)		1.00	0.90				0.80	0.71	0.66			0.92					0.92	0.79
g (e	24	(610)			1.00				0.90	0.78	0.71			1.00					1.00	0.92
Spacing (s) / Edge Distance (c, / Concrete thickness (h),	30	(762)							1.00	0.85	0.76									1.00
Spa	36	(914)								0.92	0.81									
	> 48	(1219)								1.00	0.92									

¹ Linear interpolation not permitted.

² When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318 Chapter 17 or CSA A23.3 Annex D.

³ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$, f_{AV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$ then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$ then $f_{HV} = 1.0$.

If a reduction factor value is in a shaded area, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with figure 6 and table 8 of this section to calculate permissible edge distance, spacing and concrete thickness combinations.

Table 16 - Load adjustment factors for 3/4-in. diameter Hilti HIT-Z and HIT-Z-R rods in uncracked concrete 1,2

				Spacing factor in									Edg	je distar	nce in sh	near				
3/4	-in. HIT-2	Z(-R)	Spa	cing fact tension	or in		distance n tensio		Spac	cing fact	tor in	То	⊥ ward ed	ge		o and av	•		rete thic tor in sh	
uncra	cked co	ncrete		f_{\scriptscriptstyleAN}			$f_{\scriptscriptstyle{RN}}$			f_{\scriptscriptstyleAV}			$f_{\scriptscriptstyle{RV}}$			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
Embed	lment h _{ef}	in. (mm)	4 (102)	6-3/4 (171)	8-1/2 (216)	4 (102)	6-3/4 (171)	8-1/2 (216)	4 (102)	6-3/4 (171)	8-1/2 (216)	4 (102)	6-3/4 (171)	8-1/2 (216)	4 (102)	6-3/4 (171)	8-1/2 (216)	4 (102)	6-3/4 (171)	8-1/2 (216)
	3-3/4	(95)	0.66	0.59	0.57	n/a	n/a	n/a	0.56	0.54	0.53	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
(mm)	4	(102)	0.67	0.60	0.58	n/a	n/a	0.21	0.57	0.54	0.53	n/a	n/a	0.08	n/a	n/a	0.17	n/a	n/a	n/a
Ë.	4-1/8	(105)	0.67	0.60	0.58	n/a	n/a	0.21	0.57	0.54	0.53	n/a	n/a	0.09	n/a	n/a	0.18	n/a	n/a	n/a
1	4-1/4	(108)	0.68	0.60	0.58	n/a	0.24	0.21	0.57	0.54	0.53	n/a	0.13	0.09	n/a	0.26	0.19	n/a	n/a	n/a
Ē,	5	(127)	0.71	0.62	0.60	0.39	0.26	0.23	0.58	0.55	0.54	0.35	0.17	0.12	0.39	0.32	0.23	n/a	n/a	n/a
SSS	5-3/4	(146)	0.74	0.64	0.61	0.44	0.28	0.24	0.59	0.56	0.55	0.43	0.21	0.15	0.44	0.34	0.24	0.61	n/a	n/a
ž	6	(152)	0.75	0.65	0.62	0.45	0.28	0.24	0.60	0.56	0.55	0.45	0.22	0.16	0.45	0.35	0.24	0.63	n/a	n/a
Concrete thickness	7	(178)	0.79	0.67	0.64	0.53	0.31	0.27	0.61	0.57	0.56	0.57	0.28	0.20	0.57	0.38	0.27	0.68	n/a	n/a
ete	8	(203)	0.83	0.70	0.66	0.60	0.34	0.29	0.63	0.58	0.56	0.70	0.34	0.24	0.70	0.42	0.29	0.72	n/a	n/a
ž	8-1/2	(216)	0.85	0.71	0.67	0.64	0.36	0.30	0.64	0.59	0.57	0.77	0.37	0.26	0.77	0.44	0.30	0.75	0.59	n/a
	9	(229)	0.88	0.72	0.68	0.68	0.37	0.31	0.65	0.59	0.57	0.83	0.40	0.29	0.83	0.45	0.31	0.77	0.60	n/a
/ Edge distance ($c_{_{ m a}}$) /	10	(254)	0.92	0.75	0.70	0.75	0.40	0.33	0.66	0.60	0.58	0.98	0.47	0.33	0.98	0.49	0.33	0.81	0.64	n/a
) e	10-1/4	(260)	0.93	0.75	0.70	0.77	0.41	0.34	0.67	0.60	0.58	1.00	0.49	0.35	1.00	0.50	0.35	0.82	0.64	0.57
SE SE	11	(279)	0.96	0.77	0.72	0.83	0.44	0.35	0.68	0.61	0.59	1.00	0.55	0.39	1.00	0.55	0.39	0.85	0.67	0.59
lists	12	(305)	1.00	0.80	0.74	0.90	0.48	0.38	0.70	0.62	0.60	1.00	0.62	0.44	1.00	0.62	0.44	0.89	0.70	0.62
g g	14	(356)	1.00	0.85	0.77	1.00	0.56	0.43	0.73	0.64	0.61	1.00	0.78	0.55	1.00	0.78	0.55	0.96	0.75	0.67
<u> </u>	16	(406)	1.00	0.90	0.81	1.00	0.64	0.50	0.76	0.66	0.63	1.00	0.96	0.68	1.00	0.96	0.68	1.00	0.80	0.72
<u>(6</u>	18	(457)	1.00	0.94	0.85	1.00	0.72	0.56	0.80	0.68	0.64	1.00	1.00	0.81	1.00	1.00	0.81		0.85	0.76
) 6	24	(610)	1.00	1.00	0.97	1.00	0.97	0.75	0.89	0.74	0.69	1.00		1.00	1.00		1.00		0.99	0.88
Spacing (s)	30	(762)	1.00		1.00	ļ	1.00	0.93	0.99	0.80	0.74	ļ							1.00	0.98
Spe	36	(914)				ļ		1.00	1.00	0.86	0.79	ļ								1.00
	> 48	(1219)								0.99	0.89									

Table 17 - Load adjustment factors for 3/4-in. diameter Hilti HIT-Z and HIT-Z-R rods in cracked concrete 1,2

			,				-,	. diaiii												
				Spacing factor in									Edo	je distar	ice in sh	near				
			Spac	cing fact	or in	Edge o	distance	factor	Space	cing fact	or in		丄		To	and av	vay	Conc	rete thic	kness
3/4	-in. HIT-2	Z(-R)		tension		iı	n tensio	n		shear ³		То	ward ed	ge	fı	om edg	е	fact	tor in sh	ear⁴
crac	ked con	crete		f_{AN}			f_{\scriptscriptstyleRN}			f_{\scriptscriptstyleAV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
		in.	4	6-3/4	8-1/2	4	6-3/4	8-1/2	4	6-3/4	8-1/2	4	6-3/4	8-1/2	4	6-3/4	8-1/2	4	6-3/4	8-1/2
Embed	lment h _{ef}	(mm)	(102)	(171)	(216)	(102)	(171)	(216)	(102)	(171)	(216)	(102)	(171)	(216)	(102)	(171)	(216)	(102)	(171)	(216)
	3-3/4	(95)	0.66	0.59	0.57	n/a	0.56	0.51	0.56	0.54	0.53	n/a	0.11	0.08	n/a	0.22	0.16	n/a	n/a	n/a
E	4	(102)	0.67	0.60	0.58	n/a	0.57	0.52	0.57	0.54	0.53	n/a	0.12	0.09	n/a	0.24	0.17	n/a	n/a	n/a
- in. (mm)	4-1/8	(105)	0.67	0.60	0.58	0.76	0.58	0.53	0.57	0.54	0.53	0.26	0.13	0.09	0.52	0.25	0.18	n/a	n/a	n/a
-	4-1/4	(108)	0.68	0.60	0.58	0.78	0.59	0.53	0.57	0.54	0.53	0.27	0.13	0.09	0.55	0.26	0.19	n/a	n/a	n/a
Ē),	5	(127)	0.71	0.62	0.60	0.87	0.63	0.57	0.58	0.55	0.54	0.35	0.17	0.12	0.70	0.34	0.24	n/a	n/a	n/a
ess	5-3/4	(146)	0.74	0.64	0.61	0.97	0.68	0.61	0.59	0.56	0.55	0.43	0.21	0.15	0.86	0.42	0.29	0.62	n/a	n/a
ž	6	(152)	0.75	0.65	0.62	1.00	0.70	0.62	0.60	0.56	0.55	0.46	0.22	0.16	0.92	0.44	0.31	0.63	n/a	n/a
Ę	7	(178)	0.79	0.67	0.64	1.00	0.77	0.67	0.62	0.57	0.56	0.58	0.28	0.20	1.00	0.56	0.40	0.68	n/a	n/a
ete	8	(203)	0.83	0.70	0.66	1.00	0.84	0.72	0.63	0.58	0.56	0.70	0.34	0.24	1.00	0.68	0.48	0.73	n/a	n/a
ü	8-1/2	(216)	0.85	0.71	0.67	1.00	0.88	0.75	0.64	0.59	0.57	0.77	0.37	0.26	1.00	0.75	0.53	0.75	0.59	n/a
ပိ	9	(229)	0.88	0.72	0.68	1.00	0.91	0.78	0.65	0.59	0.57	0.84	0.41	0.29	1.00	0.82	0.58	0.77	0.61	n/a
(a)	10	(254)	0.92	0.75	0.70	1.00	0.99	0.83	0.67	0.60	0.58	0.99	0.48	0.34	1.00	0.95	0.68	0.81	0.64	n/a
) 0	10-1/4	(260)	0.93	0.75	0.70	1.00	1.00	0.85	0.67	0.60	0.58	1.00	0.50	0.35	1.00	0.99	0.70	0.82	0.65	0.58
ЭЦС	11	(279)	0.96	0.77	0.72	1.00		0.89	0.68	0.61	0.59	1.00	0.55	0.39	1.00	1.00	0.78	0.85	0.67	0.60
lista	12	(305)	1.00	0.80	0.74	1.00		0.95	0.70	0.62	0.60	1.00	0.63	0.44	1.00		0.89	0.89	0.70	0.62
o ge	14	(356)	1.00	0.85	0.77	1.00		1.00	0.73	0.64	0.61	1.00	0.79	0.56	1.00		1.00	0.96	0.76	0.67
βg	16	(406)	1.00	0.90	0.81				0.76	0.66	0.63		0.97	0.68				1.00	0.81	0.72
Spacing (s) / Edge distance (c $_{\rm s}$ / Concrete thickness	18	(457)	1.00	0.94	0.85				0.80	0.68	0.65		1.00	0.82					0.86	0.76
g (s	24	(610)	1.00	1.00	0.97				0.90	0.74	0.69			1.00					0.99	0.88
Gi	30	(762)			1.00				1.00	0.81	0.74								1.00	0.98
Spa	36	(914)							1.00	0.87	0.79									1.00
	>48	(1219)								0.99	0.89									

² When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318 Chapter 17 or CSA A23.3 Annex D.

³ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$, f_{AV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{HV} = 1.0$.

If a reduction factor value is in a shaded area, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with figure 6 and table 9 of this section to calculate permissible edge distance, spacing and concrete thickness combinations.

Hilti HIT-HY 200 adhesive with deformed reinforcing bars (rebar)

Figure 7 - Rebar installation conditions

Figure 8 - Rebar installed with Hilti HIT-HY 200 adhesive

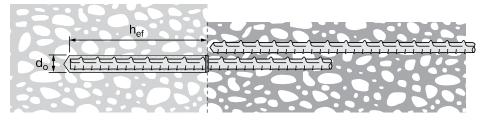


Table 18 - Specifications for rebar installed with Hilti HIT-HY 200 adhesive

Catting information		Courants and	Llaita			·	Reba	r size			
Setting information		Symbol	Units	3	4	5	6	7	8	9	10
Nominal bit diamete	r	d _o	in.	1/2	5/8	3/4	7/8	1	1-1/8	1-3/8	1-1/2
	minimum	h	in.	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	4-1/2	5
Effective	minimum	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
embedment	maximum	h	in.	7-1/2	10	12-1/2	15	17-1/2	20	22-1/2	25
	maximum	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
Minimum concrete r	nombor thickness	h	in.	h _{ef} +	1-1/4			b ±	24		
Millimum concrete i	Hember thickness	h _{min}	(mm)	(h _{ef} -	+ 30)			ef	2d _°		
Minimum adaa diata	naa1		in.	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	5-5/8	6-1/4
Minimum edge dista	nce.	C _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
Minimum anabar ana	a din m		in.	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	5-5/8	6-1/4
Minimum anchor spa	acing	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)

¹ Edge distance of 1-3/4-inch (44mm) is permitted provided the rebar remains un-torqued.

Note: The installation specifications in table 18 above and the data in tables 19 through 37 pertain to the use of Hilti HIT-HY 200 with rebar designed as a post-installed anchor using the provisions of ACI 318-14 Chapter 17. For the use of Hilti HIT-HY 200 with rebar for typical development calculations according to ACI 318-14 Chapter 25 (formerly ACI 318-11 Chapter 12), refer to section 3.1.14 for the design method and tables 89 through 93 at the end of this section.

Table 19 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for rebar in uncracked concrete 1,2,3,4,5,6,7,8,9

			Tension	n — фN _n			Shear	— фV _п	
Rebar size	Effective embedment in. (mm)	f' _c = 2,500 psi (17.2 MPa) lb (kN)	f' _c = 3,000 psi (20.7 MPa) lb (kN)	f' _c = 4,000 psi (27.6 MPa) lb (kN)	f' _c = 6,000 psi (41.4 MPa) lb (kN)	f' _c = 2,500 psi (17.2 MPa) lb (kN)	f' c = 3,000 psi (20.7 MPa) Ib (kN)	f' _c = 4,000 psi (27.6 MPa) lb (kN)	f' _c = 6,000 ps (41.4 MPa) lb (kN)
	3-3/8	4,030	4,105	4,225	4,400	8,685	8,845	9,100	9,480
	(86)	(17.9)	(18.3)	(18.8)	(19.6)	(38.6)	(39.3)	(40.5)	(42.2)
	4-1/2	5,375	5,475	5,635	5,865	11,580	11,790	12,135	12,640
#3	(114)	(23.9)	(24.4)	(25.1)	(26.1)	(51.5)	(52.4)	(54.0)	(56.2)
	7-1/2	8,960	9,125	9,390	9,780	19,295	19,650	20,225	21,065
	(191)	(39.9)	(40.6)	(41.8)	(43.5)	(85.8)	(87.4)	(90.0)	(93.7)
	4-1/2	7,170	7,300	7,510	7,825	15,440	15,720	16,180	16,850
	(114)	(31.9)	(32.5)	(33.4)	(34.8)	(68.7)	(69.9)	(72.0)	(75.0)
	6	9,555	9,735	10,015	10,430	20,585	20,960	21,575	22,465
#4	(152)	(42.5)	(43.3)	(44.5)	(46.4)	(91.6)	(93.2)	(96.0)	(99.9)
	10	15,930	16,220	16,695	17,385	34,305	34,935	35,955	37,445
	(254)	(70.9)	(72.1)	(74.3)	(77.3)	(152.6)	(155.4)	(159.9)	(166.6)
	5-5/8	10,405	11,400	11,740	12,225	22,415	24,550	25,280	26,330
	(143)	(46.3)	(50.7)	(52.2)	(54.4)	(99.7)	(109.2)	(112.5)	(117.1)
	7-1/2	14,930	15,205	15,650	16,300	32,160	32,755	33,710	35,105
#5	(191)	(66.4)	(67.6)	(69.6)	(72.5)	(143.1)	(145.7)	(149.9)	(156.2)
	12-1/2	24,885	25,345	26,085	27,165	53,605	54,590	56,185	58,510
	(318)	(110.7)	(112.7)	(116.0)	(120.8)	(238.4)	(242.8)	(249.9)	(260.3)
	6-3/4	13,680	14,985	16,905	17,600	29,460	32,275	36,405	37,915
	(171)	(60.9)	(66.7)	(75.2)	(78.3)	(131.0)	(143.6)	(161.9)	(168.7)
	9	21,060	21,900	22,535	23,470	45,360	47,165	48,540	50,550
#6	(229)	(93.7)	(97.4)	(100.2)	(104.4)	(201.8)	(209.8)	(215.9)	(224.9)
	15	35,840	36,495	37,560	39,115	77,190	78,610	80,905	84,250
	(381)	(159.4)	(162.3)	(167.1)	(174.0)	(343.4)	(349.7)	(359.9)	(374.8)
	7-7/8	17,235	18,885	21,805	23,960	37,125	40,670	46,960	51,605
	(200)	(76.7)	(84.0)	(97.0)	(106.6)	(165.1)	(180.9)	(208.9)	(229.5)
	10-1/2	26,540	29,070	30,675	31,945	57,160	62,615	66,070	68,805
#7	(267)	(118.1)	(129.3)	(136.4)	(142.1)	(254.3)	(278.5)	(293.9)	(306.1)
	17-1/2	48,780	49,675	51,125	53,240	105,065	106,995	110,120	114,675
	(445)	(217.0)	(221.0)	(227.4)	(236.8)	(467.4)	(475.9)	(489.8)	(510.1)
	9	21,060	23,070	26,640	31,295	45,360	49,690	57,375	67,400
	(229)	(93.7)	(102.6)	(118.5)	(139.2)	(201.8)	(221.0)	(255.2)	(299.8)
40	12	32,425	35,520	40,065	41,725	69,835	76,500	86,295	89,870
#8	(305)	(144.2)	(158.0)	(178.2)	(185.6)	(310.6)	(340.3)	(383.9)	(399.8)
	20	63,710	64,885	66,775	69,540	137,225	139,750	143,830	149,780
	(508)	(283.4)	(288.6)	(297.0)	(309.3)	(610.4)	(621.6)	(639.8)	(666.3)
	10-1/8	25,130	27,530	31,785	38,930	54,125	59,290	68,465	83,850
	(257)	(111.8)	(122.5)	(141.4)	(173.2)	(240.8)	(263.7)	(304.5)	(373.0)
#9	13-1/2	38,690	42,380	48,940	52,805	83,330	91,285	105,405	113,740
#3	(343)	(172.1)	(188.5)	(217.7)	(234.9)	(370.7)	(406.1)	(468.9)	(505.9)
	22-1/2	80,635	82,120	84,515	88,010	173,675	176,870	182,035	189,565
	(572)	(358.7)	(365.3)	(375.9)	(391.5)	(772.5)	(786.8)	(809.7)	(843.2)
	11-1/4	29,430	32,240	37,230	45,595	63,395	69,445	80,185	98,205
	(286)	(130.9)	(143.4)	(165.6)	(202.8)	(282.0)	(308.9)	(356.7)	(436.8)
#10	15	45,315	49,640	57,320	65,195	97,600	106,915	123,455	140,420
# IU	(381)	(201.6)	(220.8)	(255.0)	(290.0)	(434.1)	(475.6)	(549.2)	(624.6)
	25	97,500	101,380	104,340	108,655	210,000	218,360	224,730	234,030
	(635)	(433.7)	(451.0)	(464.1)	(483.3)	(934.1)	(971.3)	(999.6)	(1041.0)

¹ See section 3.1.8 for explanation on development of load values.

² See section 3.1.8 to convert design strength (factored resistance) value to ASD value.

³ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

⁴ Apply spacing, edge distance, and concrete thickness factors in tables 22 - 37 as necessary to the above values. Compare to the steel values in table 21. The lesser of the values is to be used for the design.

⁵ Data is for temperature range A: Max. short term temperature = 130° F (55° C), max. long term temperature = 110° F (43° C).

For temperature range B: Max. short term temperature = 176° F (80° C), max. long term temperature = 110° F (43° C) multiply above values by 0.92.

For temperature range C: Max. short term temperature = 248° F (120° C), max. long term temperature = 162° F (72° C) multiply above values by 0.78.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁶ Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85.

⁷ Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.

⁸ Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_a as follows: For sand-lightweight, λ_a = 0.51. For all-lightweight, λ_a = 0.45.

⁹ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 20 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for rebar in cracked concrete 1.2,3,4,5,6,7,8,9

			Tension	— фN _n			Shear	— φV _n	
Rebar size	Effective embedment in. (mm)	f' _c = 2,500 psi (17.2 MPa) lb (kN)	f' c = 3,000 psi (20.7 MPa) lb (kN)	f' _c = 4,000 psi (27.6 MPa) lb (kN)	f' c = 6,000 psi (41.4 MPa) Ib (kN)	f' c = 2,500 psi (17.2 MPa) lb (kN)	f' _c = 3,000 psi (20.7 MPa) Ib (kN)	f' _c = 4,000 psi (27.6 MPa) lb (kN)	f' _c = 6,000 psi (41.4 MPa) lb (kN)
110001 0120	3-3/8	2,790	2,845	2,925	3,045	6,010	6,120	6,300	6,560
	(86)	(12.4)	(12.7)	(13.0)	(13.5)	(26.7)	(27.2)	(28.0)	(29.2)
	4-1/2	3,720	3,790	3,900	4,060	8,015	8,165	8,400	8,750
#3	(114)	(16.5)	(16.9)	(17.3)	(18.1)	(35.7)	(36.3)	(37.4)	(38.9)
	7-1/2	6,205	6,315	6,500	6,770	13,360	13,605	14,005	14,580
	(191)	(27.6)	(28.1)	(28.9)	(30.1)	(59.4)	(60.5)	(62.3)	(64.9)
	4-1/2	4,960	5,055	5,200	5,415	10,690	10,885	11,200	11,665
	(114)	(22.1)	(22.5)	(23.1)	(24.1)	(47.6)	(48.4)	(49.8)	(51.9)
	6	6,615	6,740	6,935	7,220	14,250	14,510	14,935	15,555
#4	(152)	(29.4)	(30.0)	(30.8)	(32.1)	(63.4)	(64.5)	(66.4)	(69.2)
	10	11,025	11,230	11,560	12,035	23,750	24,185	24,895	25,925
	(254)	(49.0)	(50.0)	(51.4)	(53.5)	(105.6)	(107.6)	(110.7)	(115.3)
	5-5/8	7,370	7,970	8,200	8,540	15,875	17,165	17,665	18,395
	(143)	(32.8)	(35.5)	(36.5)	(38.0)	(70.6)	(76.4)	(78.6)	(81.8)
	7-1/2	10,435	10,625	10,935	11,390	22,470	22,885	23,555	24,530
#5	(191)	(46.4)	(47.3)	(48.6)	(50.7)	(100.0)	(101.8)	(104.8)	(109.1)
	12-1/2	17,390	17,710	18,225	18,980	37,455	38,145	39,255	40,880
	(318)	(77.4)	(78.8)	(81.1)	(84.4)	(166.6)	(169.7)	(174.6)	(181.8)
	6-3/4	9,690	10,615	11,810	12,300	20,870	22,860	25,440	26,490
	(171)	(43.1)	(47.2)	(52.5)	(54.7)	(92.8)	(101.7)	(113.2)	(117.8)
	9	14,920	15,300	15,745	16,400	32,130	32,955	33,915	35,320
#6	(229)	(66.4)	(68.1)	(70.0)	(73.0)	(142.9)	(146.6)	(150.9)	(157.1)
	15	25,040	25,500	26,245	27,330	53,935	54,925	56,530	58,870
	(381)	(111.4)	(113.4)	(116.7)	(121.6)	(239.9)	(244.3)	(251.5)	(261.9)
	7-7/8	11,750	11,965	12,315	12,825	25,305	25,770	26,525	27,620
	(200)	(52.3)	(53.2)	(54.8)	(57.0)	(112.6)	(114.6)	(118.0)	(122.9)
	10-1/2	15,665	15,955	16,420	17,100	33,740	34,360	35,365	36,830
#7	(267)	(69.7)	(71.0)	(73.0)	(76.1)	(150.1)	(152.8)	(157.3)	(163.8)
	17-1/2	26,110	26,590	27,365	28,500	56,235	57,270	58,940	61,380
	(445)	(116.1)	(118.3)	(121.7)	(126.8)	(250.1)	(254.7)	(262.2)	(273.0)
	9	14,920	15,720	16,180	16,850	32,130	33,860	34,850	36,295
	(229)	(66.4)	(69.9)	(72.0)	(75.0)	(142.9)	(150.6)	(155.0)	(161.4)
	12	20,585	20,960	21,575	22,465	44,335	45,150	46,470	48,390
#8	(305)	(91.6)	(93.2)	(96.0)	(99.9)	(197.2)	(200.8)	(206.7)	(215.2)
	20	34,305	34,935	35,955	37,445	73,890	75,250	77,445	80,650
	(508)	(152.6)	(155.4)	(159.9)	(166.6)	(328.7)	(334.7)	(344.5)	(358.7)
	10-1/8	17,800	19,500	20,720	21,580	38,340	42,000	44,635	46,480
	(257)	(79.2)	(86.7)	(92.2)	(96.0)	(170.5)	(186.8)	(198.5)	(206.8)
	13-1/2	26,360	26,845	27,630	28,775	56,780	57,825	59,510	61,975
#9	(343)	(117.3)	(119.4)	(122.9)	(128.0)	(252.6)	(257.2)	(264.7)	(275.7)
	22-1/2	43,935	44,745	46,050	47,955	94,630	96,370	99,185	103,290
	(572)	(195.4)	(199.0)	(204.8)	(213.3)	(420.9)	(428.7)	(441.2)	(459.5)
	11-1/4	20,850	22,840	25,585	26,640	44,905	49,190	55,105	57,385
	(286)	(92.7)	(101.6)	(113.8)	(118.5)	(199.7)	(218.8)	(245.1)	(255.3)
	15	32,095	33,145	34,110	35,525	69,135	71,385	73,470	76,510
#10	(381)	(142.8)	(147.4)	(151.7)	(158.0)	(307.5)	(317.5)	(326.8)	(340.3)
	25	54,240	55,240	56,850	59,205	116,830	118,980	122,450	127,515
	(635)	(241.3)	(245.7)	(252.9)	(263.4)	(519.7)	(529.2)	(544.7)	(567.2)

¹ See section 3.1.8 for explanation on development of load values.

See section 3.1.8 to convert design strength (factored resistance) value to ASD value.

³ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

⁴ Apply spacing, edge distance, and concrete thickness factors in tables 22 - 37 as necessary to the above values. Compare to the steel values in table 21. The lesser of the values is to be used for the design.

⁵ Data is for temperature range A: Max. short term temperature = 130° F (55° C), max. long term temperature = 110° F (43° C). For temperature range B: Max. short term temperature = 176° F (80° C), max. long term temperature = 110° F (43° C) multiply above values by 0.92. For temperature range C: Max. short term temperature = 248° F (120° C), max. long term temperature = 162° F (72° C) multiply above values by 0.78. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁶ Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength by 0.85.

⁷ Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.

⁸ Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_a as follows: For sand-lightweight, λ_a = 0.51. For all-lightweight, λ_a = 0.45.

⁹ Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors: #3 to $#6 - α_{seis} = 0.60$, $#7 - α_{seis} = 0.64$, $#8 - α_{seis} = 0.68$, $#9 - α_{seis} = 0.71$, $#10 - α_{seis} = 0.75$ See section 3.1.8 for additional information on seismic applications.

Table 21 - Steel design strength for US rebar^{1,2}

	AST	M A615 Grade	40 4	AST	M A615 Grade	60 4	AST	M A706 Grade	60 4
Rebar size	Tensile³ φΝ _{sa} lb (kN)	Shear⁴ φV _{sa} lb (kN)	Seismic ⁵ Shear φV _{sa,eq} Ib (kN)	Tensile³ φΝ _{sa} lb (kN)	Shear⁴ φV _{sa} lb (kN)	Seismic ⁵ Shear φV _{sa,eq} Ib (kN)	Tensile³ φΝ _{sa} Ib (kN)	Shear⁴ φV _{sa} Ib (kN)	Seismic ⁵ Shear $\phi V_{_{sa,eq}}$ Ib (kN)
#3	4,290	2,375	1,665	6,435	3,565	2,495	6,600	3,430	2,400
	(19.1)	(10.6)	(7.4)	(28.6)	(15.9)	(11.1)	(29.4)	(15.3)	(10.7)
#4	7,800	4,320	3,025	11,700	6,480	4,535	12,000	6,240	4,370
	(34.7)	(19.2)	(13.4)	(52.0)	(28.8)	(20.2)	(53.4)	(27.8)	(19.5)
#5	12,090	6,695	4,685	18,135	10,045	7,030	18,600	9,670	6,770
	(53.8)	(29.8)	(20.9)	(80.7)	(44.7)	(31.3)	(82.7)	(43.0)	(30.1)
#6	17,160	9,505	6,655	25,740	14,255	9,980	26,400	13,730	9,610
	(76.3)	(42.3)	(29.6)	(114.5)	(63.4)	(44.4)	(117.4)	(61.1)	(42.8)
#7	23,400	12,960	9,070	35,100	19,440	13,610	36,000	18,720	13,105
	(104.1)	(57.6)	(40.3)	(156.1)	(86.5)	(60.6)	(160.1)	(83.3)	(58.3)
#8	30,810	17,065	11,945	46,215	25,595	17,915	47,400	24,650	17,255
	(137.0)	(75.9)	(53.1)	(205.6)	(113.9)	(79.7)	(210.8)	(109.6)	(76.7)
#9	39,000	21,600	15,120	58,500	32,400	22,680	60,000	31,200	21,840
	(173.5)	(96.1)	(67.3)	(260.2)	(144.1)	(100.9)	(266.9)	(138.8)	(97.2)
#10	49,530	27,430	19,200	74,295	41,150	28,805	76,200	39,625	27,740
	(220.3)	(122.0)	(85.4)	(330.5)	(183.0)	(128.1)	(339.0)	(176.3)	(123.4)

¹ See Section 3.1.8 to convert design strength value to ASD value.

² ASTM A706 Grade 60 rebar are considered ductile steel elements. ASTM A615 Grade 40 and 60 rebar are considered brittle steel elements.

³ Tensile = φ A_{seN} f_{uta} as noted in ACI 318-14 Chapter 17. 4 Shear = φ 0.60 A_{seN} f_{uta} as noted in ACI 318-14 Chapter 17. 5 Seismic Shear = $\alpha_{V,seis}$ φ V_{sa}: Reduction for seismic shear only. See section 3.1.8 for additional information on seismic applications.

Table 22 - Load adjustment factors for #3 rebar in uncracked concrete^{1,2,3}

													Edą	ge distar	nce in sh	near				
uncra	#3 .cked co	ncrete		acing factors $f_{\scriptscriptstyle{AN}}$			distance $f_{\scriptscriptstyle{RN}}$			acing faction f_{AV}		То	ward ed	ge		o and averom edg	•		rete thic tor in sh $f_{\scriptscriptstyle{\mathrm{HV}}}$	
		in.	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2
Embed	lment h _{ef}	(mm)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)
	1-3/4	(44)	n/a	n/a	n/a	0.31	0.23	0.13	n/a	n/a	n/a	0.08	0.06	0.04	0.17	0.13	0.08	n/a	n/a	n/a
Ê	1-7/8	(48)	0.59	0.57	0.54	0.32	0.23	0.13	0.53	0.53	0.52	0.09	0.07	0.04	0.19	0.14	0.08	n/a	n/a	n/a
- in. (mm)	2	(51)	0.60	0.57	0.54	0.33	0.24	0.14	0.54	0.53	0.52	0.10	0.08	0.05	0.21	0.16	0.09	n/a	n/a	n/a
.⊑	3	(76)	0.65	0.61	0.57	0.41	0.30	0.17	0.56	0.55	0.53	0.19	0.14	0.09	0.38	0.29	0.17	n/a	n/a	n/a
	4	(102)	0.70	0.65	0.59	0.49	0.36	0.21	0.57	0.56	0.54	0.29	0.22	0.13	0.50	0.41	0.26	n/a	n/a	n/a
/ Edge distance $(c_{\rm s})$ / Concrete thickness (h),	4-5/8	(117)	0.73	0.67	0.60	0.55	0.40	0.23	0.59	0.57	0.55	0.36	0.27	0.16	0.56	0.45	0.33	0.58	n/a	n/a
nes	5	(127)	0.75	0.69	0.61	0.59	0.43	0.25	0.59	0.58	0.55	0.41	0.31	0.18	0.60	0.47	0.34	0.61	n/a	n/a
į	5-3/4	(146)	0.78	0.71	0.63	0.68	0.50	0.29	0.61	0.59	0.56	0.51	0.38	0.23	0.68	0.52	0.36	0.65	0.59	n/a
e ‡	6	(152)	0.80	0.72	0.63	0.71	0.52	0.30	0.61	0.59	0.56	0.54	0.40	0.24	0.71	0.53	0.37	0.66	0.60	n/a
iet	7	(178)	0.85	0.76	0.66	0.83	0.61	0.35	0.63	0.61	0.58	0.68	0.51	0.31	0.83	0.61	0.41	0.72	0.65	n/a
ŏ	8	(203)	0.90	0.80	0.68	0.95	0.69	0.40	0.65	0.62	0.59	0.83	0.62	0.37	0.95	0.69	0.44	0.77	0.70	n/a
0	8-3/4	(222)	0.93	0.82	0.69	1.00	0.76	0.44	0.66	0.63	0.59	0.95	0.71	0.43	1.00	0.76	0.47	0.80	0.73	0.61
(c_a)	9	(229)	0.94	0.83	0.70		0.78	0.45	0.67	0.64	0.60	0.99	0.74	0.45		0.78	0.48	0.81	0.74	0.62
8	10	(254)	0.99	0.87	0.72		0.86	0.50	0.68	0.65	0.61	1.00	0.87	0.52		0.86	0.51	0.86	0.78	0.66
stan	11	(279)	1.00	0.91	0.74		0.95	0.55	0.70	0.67	0.62		1.00	0.60		0.95	0.55	0.90	0.82	0.69
<u>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	12	(305)		0.94	0.77		1.00	0.60	0.72	0.68	0.63			0.69		1.00	0.60	0.94	0.85	0.72
dge	14	(356)		1.00	0.81			0.70	0.76	0.71	0.65			0.86			0.70	1.00	0.92	0.78
Ä	16	(406)			0.86			0.80	0.79	0.74	0.67			1.00			0.80		0.99	0.83
(s)	18	(457)			0.90			0.90	0.83	0.77	0.69						0.90		1.00	0.88
Spacing (s)	24	(610)			1.00			1.00	0.94	0.86	0.76						1.00			1.00
pac	30	(762)							1.00	0.96	0.82									
S	36	(914)								1.00	0.89									
	> 48	(1219)									1.00									

Table 23 - Load adjustment factors for #3 rebar in cracked concrete^{1,2,3}

Tubic	able 20 - Load adjustment is				14010						101010									
													Edg	ge distar	nce in sh	ear				
			Spa	acing fac	ctor	Edge	distance	factor	Spa	acing fac	ctor				To	and av	vay	Conc	rete thic	kness
	#3			n tensio			n tensio			in shear		To	ward ed	ae		om edg	-	fact	tor in sh	ear⁵
crac	ked con	crete		f_{AN}			$f_{_{RN}}$			f_{\scriptscriptstyleAV}			f_{\scriptscriptstyleRV}	5-		f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
		in.	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2	3-3/8	4-1/2	7-1/2
Embed	dment h _{ef}	(mm)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)	(86)	(114)	(191)
	1-3/4	(44)	n/a	n/a	n/a	0.54	0.49	0.43	n/a	n/a	n/a	0.09	0.07	0.04	0.18	0.13	0.08	n/a	n/a	n/a
	1-7/8	(48)	0.59	0.57	0.54	0.54	0.50	0.44	0.54	0.53	0.52	0.10	0.07	0.04	0.19	0.15	0.00	n/a	n/a	n/a
E	2	(51)	0.60	0.57	0.54	0.57	0.51	0.44	0.54	0.53	0.52	0.10	0.07	0.05	0.13	0.16	0.10	n/a	n/a	n/a
- in. (mm)	3	(76)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.20	0.15	0.09	0.39	0.10	0.18	n/a	n/a	n/a
	4	(102)	0.70	0.65	0.59	0.84	0.70	0.55	0.58	0.56	0.54	0.30	0.23	0.14	0.61	0.45	0.27	n/a	n/a	n/a
Ē	4-5/8	(117)	0.73	0.67	0.60	0.93	0.76	0.58	0.59	0.57	0.55	0.38	0.28	0.17	0.75	0.56	0.34	0.59	n/a	n/a
ess	5	(127)	0.75	0.69	0.61	0.99	0.80	0.60	0.59	0.58	0.56	0.42	0.32	0.19	0.85	0.63	0.38	0.61	n/a	n/a
울	5-3/4	(146)	0.78	0.71	0.63	1.00	0.88	0.64	0.61	0.59	0.56	0.52	0.39	0.23	1.00	0.78	0.47	0.66	0.60	n/a
Ē	6	(152)	0.80	0.72	0.63		0.91	0.66	0.61	0.59	0.57	0.56	0.42	0.25		0.83	0.50	0.67	0.61	n/a
rete	7	(178)	0.85	0.76	0.66		1.00	0.72	0.63	0.61	0.58	0.70	0.53	0.32		1.00	0.63	0.73	0.66	n/a
Suc	8	(203)	0.90	0.80	0.68			0.78	0.65	0.62	0.59	0.86	0.64	0.39			0.77	0.78	0.70	n/a
ŏ	8-3/4	(222)	0.93	0.82	0.69			0.83	0.66	0.64	0.60	0.98	0.73	0.44			0.83	0.81	0.74	0.62
ြိ	9	(229)	0.94	0.83	0.70			0.85	0.67	0.64	0.60	1.00	0.77	0.46			0.85	0.82	0.75	0.63
8	10	(254)	0.99	0.87	0.72			0.91	0.69	0.66	0.61		0.90	0.54			0.91	0.87	0.79	0.66
tan	11	(279)	1.00	0.91	0.74			0.98	0.71	0.67	0.62		1.00	0.62			0.98	0.91	0.83	0.70
dis	12	(305)		0.94	0.77			1.00	0.73	0.69	0.63			0.71			1.00	0.95	0.86	0.73
ge	14	(356)		1.00	0.81				0.76	0.72	0.65			0.89				1.00	0.93	0.79
Щ	16	(406)			0.86				0.80	0.75	0.68			1.00					1.00	0.84
(8)	18	(457)			0.90				0.84	0.78	0.70									0.89
ing	24	(610)			1.00				0.95	0.87	0.76									1.00
Spacing (s) / Edge distance ($c_{\rm s}$ / Concrete thickness (h),	30	(762)							1.00	0.97	0.83									
Ϋ́	36	(914)								1.00	0.90									
	> 48	(1219)									1.00									

¹ Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

⁴ Spacing factor reduction in shear applicable when c < 3^*h_{ef} , f_{AN} is applicable when edge distance, c < 3^*h_{ef} . If c $\geq 3^*h_{ef}$ then $f_{AN} = f_{AN}$.

⁵ Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{el}$. If $c \ge 3*h_{el}$, then $f_{HV} = 1.0$.

Table 24 - Load adjustment factors for #4 rebar in uncracked concrete^{1,2,3}

													Edo	ge distar	nce in sh	ear				
uncra	#4 cked co	ncrete		cing fact tension $f_{\scriptscriptstyle{\mathrm{AN}}}$			distance tension $f_{\scriptscriptstyle{RN}}$		Spac	sing fact shear $f_{\scriptscriptstyle{\mathrm{AV}}}$	or in	То	ward ed f_{RV}		To	o and avoing an and $f_{\rm RV}$	•		rete thic for in she	
		in.	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10
Embed	lment h _{ef}	(mm)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)
	1-3/4	(44)	n/a	n/a	n/a	0.27	0.20	0.12	n/a	n/a	n/a	0.06	0.04	0.02	0.11	0.08	0.05	n/a	n/a	n/a
<u></u>	2-1/2	(64)	0.59	0.57	0.54	0.31	0.23	0.13	0.53	0.53	0.52	0.09	0.07	0.04	0.19	0.14	0.08	n/a	n/a	n/a
(mm)	3	(76)	0.61	0.58	0.55	0.34	0.25	0.14	0.54	0.53	0.52	0.12	0.09	0.06	0.25	0.19	0.11	n/a	n/a	n/a
. <u>-</u>	4	(102)	0.65	0.61	0.57	0.39	0.29	0.17	0.56	0.55	0.53	0.19	0.14	0.09	0.38	0.29	0.17	n/a	n/a	n/a
	5	(127)	0.69	0.64	0.58	0.46	0.33	0.20	0.57	0.56	0.54	0.27	0.20	0.12	0.47	0.38	0.24	n/a	n/a	n/a
Concrete thickness (h),	5-3/4	(146)	0.71	0.66	0.60	0.51	0.37	0.22	0.58	0.57	0.55	0.33	0.25	0.15	0.52	0.42	0.30	0.56	n/a	n/a
Jes	6	(152)	0.72	0.67	0.60	0.52	0.38	0.22	0.58	0.57	0.55	0.35	0.26	0.16	0.53	0.43	0.31	0.58	n/a	n/a
흜	7	(178)	0.76	0.69	0.62	0.61	0.44	0.26	0.60	0.58	0.56	0.44	0.33	0.20	0.61	0.47	0.34	0.62	n/a	n/a
÷	7-1/4	(184)	0.77	0.70	0.62	0.63	0.46	0.27	0.60	0.58	0.56	0.46	0.35	0.21	0.63	0.49	0.35	0.63	0.57	n/a
ret	8	(203)	0.80	0.72	0.63	0.69	0.51	0.30	0.61	0.59	0.56	0.54	0.40	0.24	0.69	0.52	0.37	0.66	0.60	n/a
ouo	9	(229)	0.83	0.75	0.65	0.78	0.57	0.33	0.62	0.60	0.57	0.64	0.48	0.29	0.78	0.57	0.39	0.70	0.64	n/a
	10	(254)	0.87	0.78	0.67	0.86	0.63	0.37	0.64	0.61	0.58	0.75	0.56	0.34	0.86	0.63	0.42	0.74	0.67	n/a
/ Edge distance (c_{a}) /	11-1/4	(286)	0.92	0.81	0.69	0.97	0.71	0.42	0.66	0.63	0.59	0.90	0.67	0.40	0.97	0.71	0.45	0.79	0.72	0.60
8	12	(305)	0.94	0.83	0.70	1.00	0.76	0.45	0.67	0.64	0.60	0.99	0.74	0.45	1.00	0.76	0.47	0.81	0.74	0.62
itan	14	(356)	1.00	0.89	0.73		0.89	0.52	0.69	0.66	0.61	1.00	0.94	0.56		0.89	0.53	0.88	0.80	0.67
<u>Ģ</u>	16	(406)		0.94	0.77		1.00	0.59	0.72	0.68	0.63		1.00	0.69		1.00	0.59	0.94	0.85	0.72
ge	18	(457)		1.00	0.80			0.67	0.75	0.70	0.65			0.82			0.67	1.00	0.91	0.76
Щ	20	(508)			0.83			0.74	0.78	0.73	0.66			0.96			0.74		0.95	0.81
(s)	22	(559)			0.87			0.82	0.80	0.75	0.68			1.00			0.82		1.00	0.84
ing	24	(610)			0.90			0.89	0.83	0.77	0.69						0.89			0.88
Spacing (s)	30	(762)			1.00			1.00	0.91	0.84	0.74						1.00			0.99
S	36	(914)							1.00	0.91	0.79									1.00
	>48	(1219)								1.00	0.89									

Table 25 - Load adjustment factors for #4 rebar in cracked concrete^{1,2,3}

			uujus																	
													Edg	je distar	nce in sh	ear				
			Spac	cing fact	tor in	Edge	distance	factor	Spac	cing fact	tor in				To	and av	way	Conc	ete thic	kness
	#4		'	tension		l ĭ	n tensio	n	·	shear4		To	ward ed	ae	fr	om edg	e	fact	or in sh	ear⁵
crac	ked con	crete		f_{AN}			$f_{\scriptscriptstyle{RN}}$			f_{\scriptscriptstyleAV}			f_{\scriptscriptstyleRV}	J -		f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
		in.	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10	4-1/2	6	10
Embed	lment h _{ef}	(mm)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)	(114)	(152)	(254)
	1-3/4	(44)	n/a	n/a	n/a	0.49	0.45	0.41	n/a	(152) n/a	n/a	0.06	0.04	0.03	0.11	0.09	0.05	n/a	n/a	
_	2-1/2	(64)	0.59	0.57	0.54	0.49	0.45	0.41	0.54	0.53	0.52	0.06	0.04	0.03	0.11	0.09	0.05	n/a	n/a	n/a n/a
(mm)	3	(76)	0.59	0.57	0.54	0.60	0.50	0.44	0.54	0.53	0.52	0.10	0.07	0.04	0.19	0.15	0.09	n/a		
<u>د</u> ت	4	(102)	0.65	0.58	0.55	0.60	0.60	0.46	0.54	0.55	0.52	0.13	0.10	0.06	0.26	0.19	0.11	n/a n/a	n/a n/a	n/a
.⊑	5	(102)	0.69	0.61	0.57	0.70	0.60	0.49	0.56	0.56	0.53	0.20	0.15	0.09	0.55	0.29	0.16		- / -	n/a
/ Edge distance $\left(c_{s}\right)/$ Concrete thickness (h),	_	` /	0.69	0.64	0.60	0.80	0.67	0.53	0.57	0.56	0.54	0.27	0.21	0.12	0.55	0.41	0.25	n/a 0.57	n/a	n/a
SS	5-3/4	(146)	0.71	0.67	0.60	0.88	0.73	0.56	0.58	0.57	0.55	0.34	0.25	0.15	0.68	0.51	0.30	0.57	n/a	n/a
ž.	6	(152)											_						n/a	n/a
ij	7	(178)	0.76	0.69	0.62	1.00	0.83	0.62	0.60	0.58	0.56	0.46	0.34	0.20	0.91	0.68	0.41	0.63	n/a	n/a
te	7-1/4	(184)	0.77	0.70	0.62	-	0.85	0.63	0.60	0.58	0.56	0.48	0.36	0.22	0.96	0.72	0.43	0.64	0.58	n/a
Cre	8	(203)	0.80	0.72	0.63	-	0.91	0.66	0.61	0.59	0.57	0.56	0.42	0.25	1.00	0.83	0.50	0.67	0.61	n/a
ġ	9	(229)	0.83	0.75	0.65	 	1.00	0.70	0.63	0.60	0.57	0.66	0.50	0.30		1.00	0.60	0.71	0.65	n/a
<u>~</u>	10	(254)	0.87	0.78	0.67			0.75	0.64	0.62	0.58	0.78	0.58	0.35			0.70	0.75	0.68	n/a
ည္ဳ	11-1/4	(286)	0.92	0.81	0.69	<u> </u>		0.81	0.66	0.63	0.59	0.93	0.70	0.42			0.81	0.80	0.72	0.61
ng L	12	(305)	0.94	0.83	0.70	ļ		0.85	0.67	0.64	0.60	1.00	0.77	0.46			0.85	0.82	0.75	0.63
sta	14	(356)	1.00	0.89	0.73	ļ		0.95	0.70	0.66	0.62		0.97	0.58			0.95	0.89	0.81	0.68
Ö	16	(406)		0.94	0.77			1.00	0.73	0.69	0.63		1.00	0.71			1.00	0.95	0.86	0.73
ğ	18	(457)		1.00	0.80				0.75	0.71	0.65			0.84				1.00	0.91	0.77
Щ.	20	(508)			0.83				0.78	0.73	0.67			0.99					0.96	0.81
<u>(S)</u>	22	(559)			0.87				0.81	0.76	0.68			1.00					1.00	0.85
ij	24	(610)			0.90				0.84	0.78	0.70									0.89
Spacing (s)	30	(762)			1.00				0.92	0.85	0.75									1.00
S	36	(914)							1.00	0.92	0.80									<u> </u>
	>48	(1219)								1.00	0.90									

¹ Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

⁴ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$ f_{AV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{AV} = f_{AN}$. 5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{HV} = 1.0$.

Table 26 - Load adjustment factors for #5 rebar in uncracked concrete^{1,2,3}

													Edą	ge distar	nce in sh	near				
uncra	#5 cked Co	oncrete	Spac	cing factoring tension $f_{\scriptscriptstyle{AN}}$			distance $f_{\scriptscriptstyle{RN}}$		Spac	cing fact shear 4	tor in	То	ward ed	ge		o and average $f_{\rm RV}$,		rete thic tor in sh $f_{\scriptscriptstyle{\mathrm{HV}}}$	
		in.	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2	5-5/8	7-1/2	12-1/2
Embed	lment h _{ef}	(mm)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)	(143)	(191)	(318)
	1-3/4	(44)	n/a	n/a	n/a	0.25	0.18	0.11	n/a	n/a	n/a	0.04	0.03	0.02	0.08	0.06	0.04	n/a	n/a	n/a
Ê	3-1/8	(79)	0.59	0.57	0.54	0.31	0.23	0.13	0.54	0.53	0.52	0.10	0.07	0.04	0.20	0.14	0.08	n/a	n/a	n/a
(mm)	4	(102)	0.62	0.59	0.55	0.35	0.25	0.15	0.55	0.54	0.53	0.15	0.10	0.06	0.29	0.20	0.12	n/a	n/a	n/a
.⊑	5	(127)	0.65	0.61	0.57	0.39	0.29	0.17	0.56	0.55	0.53	0.21	0.14	0.09	0.41	0.29	0.17	n/a	n/a	n/a
(F)	6	(152)	0.68	0.63	0.58	0.44	0.32	0.19	0.57	0.55	0.54	0.27	0.19	0.11	0.45	0.38	0.23	n/a	n/a	n/a
) SS	7	(178)	0.71	0.66	0.59	0.49	0.36	0.21	0.58	0.56	0.55	0.34	0.24	0.14	0.50	0.41	0.28	n/a	n/a	n/a
/ Edge distance (c _a) / Concrete thickness	7-1/8	(181)	0.71	0.66	0.60	0.50	0.37	0.22	0.58	0.56	0.55	0.35	0.24	0.15	0.51	0.41	0.29	0.57	n/a	n/a
Ę	8	(203)	0.74	0.68	0.61	0.55	0.40	0.24	0.59	0.57	0.55	0.41	0.29	0.17	0.56	0.44	0.33	0.61	n/a	n/a
e ‡	9	(229)	0.77	0.70	0.62	0.62	0.46	0.27	0.60	0.58	0.56	0.50	0.35	0.21	0.62	0.48	0.35	0.65	0.57	n/a
cret	10	(254)	0.80	0.72	0.63	0.69	0.51	0.30	0.62	0.59	0.56	0.58	0.40	0.24	0.69	0.52	0.37	0.68	0.60	n/a
ŏ	11	(279)	0.83	0.74	0.65	0.76	0.56	0.33	0.63	0.60	0.57	0.67	0.47	0.28	0.76	0.56	0.39	0.71	0.63	n/a
0	12	(305)	0.86	0.77	0.66	0.83	0.61	0.36	0.64	0.61	0.58	0.76	0.53	0.32	0.83	0.61	0.41	0.75	0.66	n/a
် ခ	14	(356)	0.91	0.81	0.69	0.96	0.71	0.41	0.66	0.63	0.59	0.96	0.67	0.40	0.96	0.71	0.45	0.81	0.71	0.60
ဥ	16	(406)	0.97	0.86	0.71	1.00	0.81	0.47	0.69	0.65	0.60	1.00	0.82	0.49	1.00	0.81	0.49	0.86	0.76	0.64
star	18	(457)	1.00	0.90	0.74		0.91	0.53	0.71	0.66	0.62		0.98	0.59		0.91	0.54	0.91	0.81	0.68
ë	20	(508)		0.94	0.77		1.00	0.59	0.73	0.68	0.63		1.00	0.69		1.00	0.59	0.96	0.85	0.72
dg	22	(559)		0.99	0.79			0.65	0.75	0.70	0.64			0.79			0.65	1.00	0.90	0.76
/E	24	(610)		1.00	0.82			0.71	0.78	0.72	0.66			0.90			0.71		0.94	0.79
Spacing (s)	26	(660)			0.85			0.77	0.80	0.74	0.67			1.00			0.77		0.97	0.82
ing	28	(711)			0.87			0.83	0.82	0.76	0.68						0.83		1.00	0.85
pac	30	(762)			0.90			0.89	0.85	0.77	0.69						0.89			0.88
S	36	(914)			0.98			1.00	0.92	0.83	0.73						1.00			0.97
	> 48	(1219)			1.00				1.00	0.94	0.81									1.00

Table 27 - Load adjustment factors for #5 rebar in cracked concrete^{1,2,3}

													Edç	ge distar	ice in sh	near				
crac	#5 ked con	ıcrete		cing factoring tension $f_{\scriptscriptstyle{AN}}$			distance n tensio		Spac	cing fact shear ⁴	tor in	То	ward ed	lge		o and av	,		rete thic tor in sh $f_{\scriptscriptstyle HV}$	
			F F /0		10.10	F F /0	f _{RN}	40.4/0	F F (0		40.4/0	F F (0		10.10	F F /0	J _{RV}	40.4/0	F F (0		10.4.0
Embed	lment h _{ef}	in. (mm)	5-5/8 (143)	7-1/2 (191)	12-1/2 (318)	5-5/8 (143)	7-1/2 (191)	12-1/2 (318)	5-5/8 (143)	7-1/2 (191)	12-1/2 (318)	5-5/8 (143)	7-1/2 (191)	12-1/2 (318)	5-5/8 (143)	7-1/2 (191)	12-1/2 (318)	5-5/8 (143)	7-1/2 (191)	12-1/2 (318)
	1-3/4	(44)	n/a	n/a	n/a	0.46	0.43	0.40	n/a	n/a	n/a	0.04	0.03	0.02	0.09	0.06	0.04	n/a	n/a	n/a
	3-1/8	(79)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.10	0.07	0.02	0.20	0.14	0.09	n/a	n/a	n/a
(mm)	4	(102)	0.62	0.59	0.55	0.62	0.55	0.46	0.55	0.54	0.52	0.15	0.10	0.06	0.30	0.14	0.03	n/a	n/a	n/a
- in.	5	(127)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.13	0.15	0.09	0.41	0.29	0.18	n/a	n/a	n/a
	6	(152)	0.68	0.63	0.58	0.78	0.66	0.53	0.57	0.56	0.54	0.27	0.19	0.12	0.54	0.38	0.23	n/a	n/a	n/a
Ξ	7	(178)	0.71	0.66	0.59	0.87	0.72	0.56	0.58	0.56	0.55	0.34	0.24	0.15	0.68	0.48	0.29	n/a	n/a	n/a
/ Edge distance $(c_{_{\rm J}})$ / Concrete thickness (h),	7-1/8	(181)	0.71	0.66	0.60	0.88	0.73	0.56	0.58	0.57	0.55	0.35	0.25	0.15	0.70	0.50	0.30	0.58	n/a	n/a
울	8	(203)	0.74	0.68	0.61	0.96	0.78	0.59	0.59	0.57	0.55	0.42	0.30	0.18	0.84	0.59	0.35	0.61	n/a	n/a
Ē	9	(229)	0.77	0.70	0.62	1.00	0.85	0.62	0.60	0.58	0.56	0.50	0.35	0.21	1.00	0.71	0.42	0.65	0.58	n/a
ret	10	(254)	0.80	0.72	0.63		0.91	0.66	0.62	0.59	0.57	0.58	0.41	0.25		0.83	0.50	0.68	0.61	n/a
ouc	11	(279)	0.83	0.74	0.65		0.98	0.69	0.63	0.60	0.57	0.67	0.48	0.29		0.95	0.57	0.72	0.64	n/a
ŏ	12	(305)	0.86	0.77	0.66		1.00	0.73	0.64	0.61	0.58	0.77	0.54	0.33		1.00	0.65	0.75	0.67	n/a
O.	14	(356)	0.91	0.81	0.69			0.81	0.66	0.63	0.59	0.97	0.68	0.41			0.81	0.81	0.72	0.61
œ.	16	(406)	0.97	0.86	0.71			0.89	0.69	0.65	0.61	1.00	0.84	0.50			0.89	0.86	0.77	0.65
tan	18	(457)	1.00	0.90	0.74			0.97	0.71	0.67	0.62		1.00	0.60			0.97	0.92	0.82	0.69
dis	20	(508)		0.94	0.77			1.00	0.73	0.68	0.63			0.70			1.00	0.97	0.86	0.73
ge	22	(559)		0.99	0.79				0.76	0.70	0.64			0.81				1.00	0.90	0.76
Æ	24	(610)		1.00	0.82				0.78	0.72	0.66			0.92					0.94	0.79
(8)	26	(660)			0.85				0.80	0.74	0.67			1.00					0.98	0.83
Spacing (s)	28	(711)			0.87				0.83	0.76	0.68								1.00	0.86
bac	30	(762)			0.90				0.85	0.78	0.70									0.89
ري ا	36	(914)			0.98				0.92	0.83	0.74									0.97
	> 48	(1219)			1.00				1.00	0.94	0.82									1.00

¹ Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

⁴ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$ f_{AV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$ then $f_{AV} = f_{AN}$.

5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$ then $f_{HV} = 1.0$.

Table 28 - Load adjustment factors for #6 rebar in uncracked concrete^{1,2,3}

			ŕ										- Cal	a dista						
													Edő	je distar	nce in sh	lear				
			Spac	cing fact	or in	Edge o	distance	factor	Spac	cing fact	tor in		丄		To	and av	vay	Conc	ete thic	kness
	#6			tension		ir	n tensio	n		shear4		To	ward ed	ge	fı	om edg	е	fact	or in sh	ear ⁵
uncra	cked co	ncrete		f_{AN}			f_{RN}			f_{\scriptscriptstyleAV}			$f_{\scriptscriptstyle{RV}}$			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
Embod	lmont h	in.	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15
EIIIDeo	lment h _{ef}	(mm)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)
	1-3/4	(44)	n/a	n/a	n/a	0.24	0.18	0.10	n/a	n/a	n/a	0.03	0.02	0.01	0.07	0.05	0.03	n/a	n/a	n/a
_	3-3/4	(95)	0.59	0.57	0.54	0.31	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.08	n/a	n/a	n/a
(mm)	4	(102)	0.60	0.57	0.54	0.32	0.23	0.14	0.54	0.53	0.52	0.12	0.08	0.05	0.24	0.16	0.09	n/a	n/a	n/a
Ë.	5	(127)			0.35	0.26	0.15	0.55	0.54	0.53	0.17	0.11	0.06	0.33	0.22	0.13	n/a	n/a	n/a	
	6	(152)	0.65	0.61	0.57	0.39	0.29	0.17	0.56	0.55	0.53	0.22	0.14	0.08	0.41	0.29	0.17	n/a	n/a	n/a
(F)	7	(178)	0.67	0.63	0.58	0.43	0.32	0.19	0.57	0.55	0.54	0.28	0.18	0.11	0.45	0.36	0.21	n/a	n/a	n/a
SSS	8	(203)	0.70	0.65	0.59	0.48	0.35	0.20	0.58	0.56	0.54	0.34	0.22	0.13	0.49	0.40	0.26	n/a	n/a	n/a
Concrete thickness	8-1/2	(216)	0.71	0.66	0.59	0.50	0.37	0.21	0.59	0.56	0.55	0.37	0.24	0.14	0.51	0.41	0.28	0.59	n/a	n/a
ξi	9	(229)	0.72	0.67	0.60	0.52	0.38	0.22	0.59	0.57	0.55	0.40	0.26	0.15	0.53	0.43	0.31	0.60	n/a	n/a
ete	10	(254)	0.75	0.69	0.61	0.57	0.42	0.25	0.60	0.58	0.55	0.47	0.31	0.18	0.57	0.46	0.33	0.64	n/a	n/a
Ğ	10-3/4	(273)	0.77	0.70	0.62	0.62	0.45	0.27	0.61	0.58	0.56	0.53	0.34	0.20	0.62	0.48	0.35	0.66	0.57	n/a
Ŝ	12	(305)	0.80	0.72	0.63	0.69	0.51	0.30	0.62	0.59	0.56	0.62	0.40	0.24	0.69	0.52	0.37	0.70	0.60	n/a
	14	(356)	0.85	0.76	0.66	0.80	0.59	0.35	0.64	0.61	0.57	0.78	0.51	0.30	0.80	0.59	0.40	0.75	0.65	n/a
/Edge distance (c _a) /	16	(406)	0.90	0.80	0.68	0.92	0.67	0.39	0.66	0.62	0.59	0.96	0.62	0.37	0.92	0.67	0.43	0.80	0.70	n/a
ĵ.	16-3/4	(425)	0.91	0.81	0.69	0.96	0.71	0.41	0.67	0.63	0.59	1.00	0.67	0.39	0.96	0.71	0.45	0.82	0.71	0.60
lista	18	(457)	0.94	0.83	0.70	1.00	0.76	0.44	0.68	0.64	0.60		0.74	0.44	1.00	0.76	0.47	0.85	0.74	0.62
ge C	20	(508)	0.99	0.87	0.72		0.84	0.49	0.70	0.65	0.61		0.87	0.51		0.84	0.51	0.90	0.78	0.65
βg	22	(559)	1.00	0.91	0.74		0.93	0.54	0.72	0.67	0.62		1.00	0.59		0.93	0.55	0.94	0.82	0.68
<u></u>	24	(610)		0.94	0.77		1.00	0.59	0.74	0.68	0.63			0.67		1.00	0.59	0.99	0.85	0.72
<u>s)</u>	26	(660)		0.98	0.79			0.64	0.76	0.70	0.64			0.76			0.64	1.00	0.89	0.74
Spacing (s)	28	(711)		1.00	0.81			0.69	0.78	0.71	0.65			0.85			0.69		0.92	0.77
Spe	30	(762)			0.83			0.74	0.80	0.73	0.66			0.94			0.74		0.95	0.80
	36	(914)			0.90			0.89	0.86	0.77	0.69			1.00			0.89		1.00	0.88
	> 48	(1219)			1.00			1.00	0.99	0.86	0.76						1.00			1.00

Table 29 - Load adjustment factors for #6 rebar in cracked concrete^{1,2,3}

								_												
													Edg	je distar	nce in sh	ear				
			Spac	ing fact	or in	Edge o	distance	factor	Spac	cing fact	tor in				To	and av	vay	Conc	rete thic	kness
	#6			tension		iı	n tensio	n		shear4		To	ward ed	ge	fr	om edg	е	fact	or in sh	ear ⁵
crac	ked con	crete		f_{\scriptscriptstyleAN}			f_{\scriptscriptstyleRN}			f_{\scriptscriptstyleAV}			$f_{\scriptscriptstyle{RV}}$			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
		in.	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15	6-3/4	9	15
Embed	ment h _{ef}	(mm)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)	(171)	(229)	(381)
	1-3/4	(44)	n/a	n/a	n/a	0.44	0.42	0.39	n/a	n/a	n/a	0.03	0.02	0.01	0.07	0.05	0.03	n/a	n/a	n/a
_	3-3/4	(95)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.08	n/a	n/a	n/a
(mm)	4	(102)	0.60	0.57	0.54	0.57	0.51	0.44	0.54	0.53	0.52	0.12	0.08	0.05	0.24	0.16	0.09	n/a	n/a	n/a
ï.	5	(127) 0.62 0.59 0.56		0.56	0.63	0.56	0.47	0.55	0.54	0.53	0.17	0.11	0.07	0.34	0.22	0.13	n/a	n/a	n/a	
	6	(152)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.22	0.14	0.09	0.44	0.29	0.17	n/a	n/a	n/a
Ē,	7	(178)	0.67	0.63	0.58	0.77	0.65	0.52	0.57	0.55	0.54	0.28	0.18	0.11	0.56	0.36	0.22	n/a	n/a	n/a
thickness	8	(203)	0.70	0.65	0.59	0.84	0.70	0.55	0.58	0.56	0.54	0.34	0.22	0.13	0.68	0.44	0.26	n/a	n/a	n/a
Ř	8-1/2	(216)	0.71	0.66	0.59	0.88	0.72	0.56	0.59	0.56	0.55	0.37	0.24	0.14	0.75	0.49	0.29	0.59	n/a	n/a
Ę	9	(229)	0.72	0.67	0.60	0.91	0.75	0.57	0.59	0.57	0.55	0.41	0.26	0.16	0.82	0.53	0.32	0.61	n/a	n/a
ete	10	(254)	0.75	0.69	0.61	0.99	0.80	0.60	0.60	0.58	0.55	0.48	0.31	0.18	0.95	0.62	0.37	0.64	n/a	n/a
Concrete	10-3/4	(273)	0.77	0.70	0.62	1.00	0.84	0.62	0.61	0.58	0.56	0.53	0.35	0.21	1.00	0.69	0.41	0.66	0.57	n/a
ဝိ	12	(305)	0.80	0.72	0.63		0.91	0.66	0.62	0.59	0.56	0.63	0.41	0.24		0.82	0.49	0.70	0.61	n/a
(e)	14	(356)	0.85	0.76	0.66		1.00	0.72	0.64	0.61	0.58	0.79	0.51	0.31		1.00	0.61	0.76	0.65	n/a
distance (c_)	16	(406)	0.90	0.80	0.68			0.78	0.66	0.62	0.59	0.97	0.63	0.37			0.75	0.81	0.70	n/a
auc	16-3/4	(425)	0.91	0.81	0.69			0.81	0.67	0.63	0.59	1.00	0.67	0.40			0.80	0.83	0.72	0.60
ist	18	(457)	0.94	0.83	0.70			0.85	0.68	0.64	0.60		0.75	0.45			0.85	0.86	0.74	0.62
	20	(508)	0.99	0.87	0.72			0.91	0.70	0.65	0.61		0.88	0.52			0.91	0.90	0.78	0.66
B	22	(559)	1.00	0.91	0.74			0.98	0.72	0.67	0.62		1.00	0.60			0.98	0.95	0.82	0.69
(s) / Edge	24	(610)		0.94	0.77			1.00	0.74	0.68	0.63			0.69			1.00	0.99	0.86	0.72
) g(26	(660)		0.98	0.79				0.76	0.70	0.64			0.77				1.00	0.89	0.75
Spacing	28	(711)		1.00	0.81				0.79	0.71	0.65			0.87					0.92	0.78
Sp	30	(762)			0.83				0.81	0.73	0.66			0.96					0.96	0.81
	36	(914)			0.90				0.87	0.77	0.69			1.00					1.00	0.88
	> 48	(1219)			1.00				0.99	0.87	0.76									1.00

¹ Linear interpolation not permitted.

Shaded area with reduced edge distance is permitted provided rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

⁴ Spacing factor reduction in shear applicable when $c < 3^*h_{ef}$, f_{AV} is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$, then $f_{AV} = f_{AN}$. 5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$, then $f_{HV} = 1.0$.

Table 30 - Load adjustment factors for #7 rebar in uncracked concrete^{1,2,3}

				till Clit																
													Edg	e distar	ice in sh	near				
			Spac	cing fact	or in	Edge	distance	factor	Spa	cing fact	or in				Te	o and av	way	Conc	rete thic	kness
	#7			tension		i	n tensio	n		shear4		To	ward ed	ge	fı	rom edg	е	fac	tor in sh	ear ⁵
uncra	cked co	ncrete		f_{\scriptscriptstyleAN}			$f_{\scriptscriptstyle{RN}}$			f_{\scriptscriptstyleAV}			f_{\scriptscriptstyleRV}	_		f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
		in.	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2
Embed	ment h _{ef}	(mm)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)
	1-3/4	(44)	n/a	n/a	n/a	0.23	0.17	0.10	n/a	n/a	n/a	0.03	0.02	0.01	0.05	0.04	0.02	n/a	n/a	n/a
	4-3/8	(111)	0.59	0.57	0.54	0.31	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.08	n/a	n/a	n/a
Ē	5	(127)	0.61	0.58	0.55	0.33	0.24	0.14	0.54	0.53	0.52	0.13	0.09	0.05	0.27	0.17	0.09	n/a	n/a	n/a
- in. (mm)	6	(152)	0.63	0.60	0.56	0.36	0.26	0.15	0.55	0.54	0.53	0.17	0.11	0.06	0.35	0.23	0.12	n/a	n/a	n/a
.≒	7	(178)	0.65	0.61	0.57	0.39	0.29	0.17	0.56	0.55	0.53	0.22	0.14	0.08	0.40	0.29	0.16	n/a	n/a	n/a
Spacing (s) / Edge distance ($c_{\mathfrak{z}}$ / Concrete thickness (h),	8	(203)	0.67	0.63	0.58	0.43	0.31	0.18	0.57	0.55	0.53	0.27	0.17	0.09	0.44	0.35	0.19	n/a	n/a	n/a
SSS	9	(229)	0.69	0.64	0.59	0.46	0.34	0.20	0.58	0.56	0.54	0.32	0.21	0.11	0.47	0.39	0.23	n/a	n/a	n/a
ž	9-7/8	(251)	0.71	0.66	0.59	0.49	0.36	0.21	0.59	0.56	0.54	0.37	0.24	0.13	0.51	0.41	0.26	0.59	n/a	n/a
ţ	10	(254)	0.71	0.66	0.60	0.50	0.37	0.22	0.59	0.57	0.54	0.38	0.24	0.13	0.51	0.41	0.27	0.59	n/a	n/a
ete	11	(279)	0.73	0.67	0.60	0.54	0.40	0.23	0.60	0.57	0.55	0.43	0.28	0.15	0.55	0.44	0.31	0.62	n/a	n/a
nc	12	(305)	0.75	0.69	0.61	0.59	0.43	0.25	0.60	0.58	0.55	0.49	0.32	0.17	0.59	0.46	0.34	0.65	n/a	n/a
රි	12-1/2	(318)	0.76	0.70	0.62	0.61	0.45	0.26	0.61	0.58	0.55	0.52	0.34	0.19	0.61	0.48	0.35	0.66	0.57	n/a
	14	(356)	0.80	0.72	0.63	0.69	0.50	0.30	0.62	0.59	0.56	0.62	0.40	0.22	0.69	0.52	0.37	0.70	0.60	n/a
9	16	(406)	0.84	0.75	0.65	0.78	0.58	0.34	0.64	0.60	0.57	0.76	0.49	0.27	0.78	0.58	0.39	0.75	0.65	n/a
anc	18	(457)	0.88	0.79	0.67	0.88	0.65	0.38	0.66	0.62	0.58	0.91	0.59	0.32	0.88	0.65	0.42	0.79	0.68	n/a
dist	19-1/2	(495)	0.91	0.81	0.69	0.96	0.70	0.41	0.67	0.63	0.58	1.00	0.66	0.36	0.96	0.70	0.45	0.82	0.71	0.58
ge	20	(508)	0.92	0.82	0.69	0.98	0.72	0.42	0.67	0.63	0.59		0.69	0.38	0.98	0.72	0.45	0.83	0.72	0.59
Б	22	(559)	0.97	0.85	0.71	1.00	0.79	0.46	0.69	0.64	0.60		0.80	0.43	1.00	0.79	0.48	0.87	0.76	0.62
<u>(s)</u>	24	(610)	1.00	0.88	0.73		0.87	0.51	0.71	0.66	0.60		0.91	0.49		0.87	0.52	0.91	0.79	0.65
g B	26	(660)		0.91	0.75		0.94	0.55	0.73	0.67	0.61		1.00	0.56		0.94	0.55	0.95	0.82	0.67
aci	28	(711)		0.94	0.77		1.00	0.59	0.74	0.68	0.62			0.62		1.00	0.59	0.99	0.85	0.70
တ္တ	30	(762)		0.98	0.79			0.63	0.76	0.70	0.63			0.69			0.63	1.00	0.88	0.72
	36	(914)		1.00	0.84	-		0.76	0.81	0.73	0.66			0.91			0.76		0.97	0.79
	> 48	(1219)			0.96			1.00	0.92	0.81	0.71			1.00			1.00		1.00	0.91

Table 31 - Load adjustment factors for #7 rebar in cracked concrete^{1,2,3}

												Edg	je distar	ice in sh	near					
			Spa	cing fact	tor in	Edge	distance	factor	Spac	cing fact	tor in				To	o and av	way	Conc	rete thic	kness
	#7			tension		i	n tensio	า		shear4		То	ward ed	ge	fı	rom edg	e	fac	tor in sh	ear ⁵
crac	ked con	crete		f_{\scriptscriptstyleAN}			f_{\scriptscriptstyleRN}			f_{\scriptscriptstyleAV}			f_{\scriptscriptstyleRV}			$f_{\scriptscriptstyle{RV}}$			f_{\scriptscriptstyleHV}	
Facilities and	l	in.	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2	7-7/8	10-1/2	17-1/2
Embed	lment h _{ef}	(mm)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)	(200)	(267)	(445)
	1-3/4	(44)	n/a	n/a	n/a	0.43	0.41	0.38	n/a	n/a	n/a	0.03	0.02	0.01	0.06	0.04	0.03	n/a	n/a	n/a
	4-3/8	(111)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.09	0.05	0.23	0.17	0.10	n/a	n/a	n/a
- in. (mm)	5	(127)	0.61	0.58	0.55	0.59	0.52	0.45	0.54	0.54	0.53	0.14	0.10	0.06	0.28	0.21	0.13	n/a	n/a	n/a
<u>-</u>	6	(152)	0.63	0.60	0.56	0.64	0.56	0.47	0.55	0.54	0.53	0.18	0.14	0.08	0.37	0.27	0.16	n/a	n/a	n/a
	7	(178)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.54	0.23	0.17	0.10	0.46	0.35	0.21	n/a	n/a	n/a
€	8	(203)	0.67	0.63	0.58	0.76	0.64	0.52	0.57	0.56	0.54	0.28	0.21	0.13	0.56	0.42	0.25	n/a	n/a	n/a
ess	9	(229)	0.69	0.64	0.59	0.82	0.68	0.54	0.58	0.57	0.55	0.34	0.25	0.15	0.67	0.50	0.30	n/a	n/a	n/a
挌	9-7/8	(251)	0.71	0.66	0.59	0.87	0.72	0.56	0.59	0.57	0.55	0.39	0.29	0.17	0.77	0.58	0.35	0.59	n/a	n/a
₽	10	(254)	0.71	0.66	0.60	0.88	0.73	0.56	0.59	0.57	0.55	0.39	0.30	0.18	0.79	0.59	0.35	0.60	n/a	n/a
rete	11	(279)	0.73	0.67	0.60	0.95	0.77	0.59	0.60	0.58	0.56	0.45	0.34	0.20	0.91	0.68	0.41	0.63	n/a	n/a
DIC	12	(305)	0.75	0.69	0.61	1.00	0.82	0.61	0.61	0.59	0.56	0.52	0.39	0.23	1.00	0.78	0.47	0.66	n/a	n/a
õ	12-1/2	(318)	0.76	0.70	0.62		0.84	0.62	0.61	0.59	0.57	0.55	0.41	0.25		0.83	0.50	0.67	0.61	n/a
~ ~	14	(356)	0.80	0.72	0.63		0.91	0.66	0.63	0.60	0.57	0.65	0.49	0.29		0.91	0.59	0.71	0.64	n/a
99	16	(406)	0.84	0.75	0.65		1.00	0.71	0.64	0.62	0.58	0.80	0.60	0.36		1.00	0.71	0.76	0.69	n/a
ţaŭ	18	(457)	0.88	0.79	0.67			0.76	0.66	0.63	0.59	0.95	0.71	0.43			0.76	0.80	0.73	n/a
dis	19-1/2	(495)	0.91	0.81	0.69			0.80	0.67	0.64	0.60	1.00	0.80	0.48			0.80	0.84	0.76	0.64
ge	20	(508)	0.92	0.82	0.69			0.82	0.68	0.65	0.61		0.84	0.50			0.82	0.85	0.77	0.65
Ñ	22	(559)	0.97	0.85	0.71			0.87	0.70	0.66	0.62		0.96	0.58			0.87	0.89	0.81	0.68
(s)	24	(610)	1.00	0.88	0.73			0.93	0.71	0.68	0.63		1.00	0.66			0.93	0.93	0.84	0.71
Spacing (s) / Edge distance (c ₃) / Concrete thickness (h),	26	(660)		0.91	0.75			0.99	0.73	0.69	0.64			0.74			0.99	0.96	0.88	0.74
oaci	28	(711)		0.94	0.77			1.00	0.75	0.71	0.65			0.83			1.00	1.00	0.91	0.77
ઝ	30	(762)		0.98	0.79				0.77	0.72	0.66			0.92				1.00	0.94	0.79
	36	(914)		1.00	0.84				0.82	0.77	0.69			1.00					1.00	0.87
	> 48	(1219)			0.96				0.93	0.85	0.75									1.00

¹ Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

⁴ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$, f_{AV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{AV} = f_{AN}$. 5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{HV} = 1.0$.

Table 32 - Load adjustment factors for #8 rebar in uncracked concrete^{1,2,3}

													Ede	no distar	nce in sh	noar				
													Euí	Je uistai	ICE III SI	lear				
			Spac	cing fact	tor in	Edge	distance	factor	Spac	cing fact	tor in		工		Te	o and av	vay	Conc	rete thic	kness
	#8			tension		i	n tensio	n		shear4		To	ward ed	ge	fı	om edg	е	fact	or in sh	ear⁵
uncra	cked co	ncrete		f_{AN}			f_{\scriptscriptstyleRN}			f_{\scriptscriptstyleAV}			$f_{\scriptscriptstyle{RV}}$			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
Embod	lment h.,	in.	9	12	20	9	12	20	9	12	20	9	12	20	9	12	20	9	12	20
EIIIDEU	iment n _{ef}	(mm)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)
	1-3/4	(44)	n/a	n/a	n/a	0.23	0.17	0.10	n/a	n/a	n/a	0.02	0.01	0.01	0.05	0.03	0.01	n/a	n/a	n/a
_	5	(127)	0.59	0.57	0.54	0.31	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.07	n/a	n/a	n/a
(mm)	6	(152)	0.61	0.58	0.55	0.33	0.25	0.14	0.55	0.53	0.52	0.14	0.09	0.05	0.29	0.19	0.09	n/a	n/a	n/a
ï.	7	(178)	0.63	0.60	0.56	0.36	0.27	0.16	0.55	0.54	0.53	0.18	0.12	0.06	0.36	0.23	0.12	n/a	n/a	n/a
	8	(203)	0.65	0.61	0.57	0.39	0.29	0.17	0.56	0.55	0.53	0.22	0.14	0.07	0.40	0.29	0.15	n/a	n/a	n/a
(F)	9	(229)	0.67	0.63	0.58	0.42	0.31	0.18	0.57	0.55	0.53	0.26	0.17	0.09	0.43	0.34	0.17	n/a	n/a	n/a
SSS	10	(==0) 0.00 0.00		0.45	0.33	0.20	0.58	0.56	0.54	0.31	0.20	0.10	0.46	0.38	0.20	n/a	n/a	n/a		
Concrete thickness	11	(279)	0.70	0.65	0.59	0.48	0.36	0.21	0.58	0.56	0.54	0.35	0.23	0.12	0.50	0.40	0.23	n/a	n/a	n/a
ξi	11-1/4	(286)	0.71	0.66	0.59	0.49	0.36	0.21	0.59	0.56	0.54	0.37	0.24	0.12	0.50	0.41	0.24	0.58	n/a	n/a
ete	12	(305)	0.72	0.67	0.60	0.52	0.38	0.22	0.59	0.57	0.54	0.40	0.26	0.13	0.53	0.43	0.27	0.60	n/a	n/a
Ğ	13	(330)	0.74	0.68	0.61	0.56	0.41	0.24	0.60	0.57	0.55	0.46	0.30	0.15	0.56	0.45	0.30	0.63	n/a	n/a
Ŝ	14	(356)	0.76	0.69	0.62	0.60	0.44	0.26	0.61	0.58	0.55	0.51	0.33	0.17	0.60	0.47	0.34	0.65	n/a	n/a
	14-1/4	(362)	0.76	0.70	0.62	0.61	0.45	0.26	0.61	0.58	0.55	0.52	0.34	0.17	0.61	0.48	0.34	0.66	0.57	n/a
ပ	16	(406)	0.80	0.72	0.63	0.69	0.50	0.30	0.62	0.59	0.56	0.62	0.40	0.21	0.69	0.52	0.37	0.70	0.60	n/a
Š	18	(457)	0.83	0.75	0.65	0.77	0.57	0.33	0.64	0.60	0.57	0.74	0.48	0.25	0.77	0.57	0.39	0.74	0.64	n/a
/Edge distance (c _a) /	20	(508)	0.87	0.78	0.67	0.86	0.63	0.37	0.65	0.61	0.57	0.87	0.56	0.29	0.86	0.63	0.42	0.78	0.67	n/a
o e	22	(559)	0.91	0.81	0.68	0.94	0.69	0.41	0.67	0.63	0.58	1.00	0.65	0.33	0.94	0.69	0.44	0.82	0.71	n/a
9	22-1/4	(565)	0.91	0.81	0.69	0.95	0.70	0.41	0.67	0.63	0.58		0.66	0.34	0.95	0.70	0.45	0.82	0.71	0.57
_ @	24	(610)	0.94	0.83	0.70	1.00	0.76	0.44	0.68	0.64	0.59		0.74	0.38	1.00	0.76	0.47	0.85	0.74	0.59
g 6	26	(660)	0.98	0.86	0.72		0.82	0.48	0.70	0.65	0.59		0.84	0.43		0.82	0.50	0.89	0.77	0.61
Ği	28	(711)	1.00	0.89	0.73		0.88	0.52	0.71	0.66	0.60		0.94	0.48		0.88	0.53	0.92	0.80	0.64
Spacing (s)	30	(762)		0.92	0.75		0.95	0.55	0.73	0.67	0.61		1.00	0.53		0.95	0.55	0.95	0.83	0.66
	36	(914)		1.00	0.80		1.00	0.67	0.77	0.70	0.63			0.69		1.00	0.67	1.00	0.91	0.72
	> 48	(1219)			0.90			0.89	0.86	0.77	0.67			1.00			0.89		1.00	0.83

Table 33 - Load adjustment factors for #8 rebar in cracked concrete^{1,2,3}

													Edg	je distar	nce in sh	ıear				
	#8			cing fact tension	or in		distance n tensio		Spac	cing fact	or in	To	⊥ ward ed	ge		and av	•		ete thic or in sh	
crac	ked con	crete		f_{AN}			f_{\scriptscriptstyleRN}			f_{\scriptscriptstyleAV}			$f_{\scriptscriptstyle{RV}}$			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
Embad	ment h .	in.	9	12	20	9	12	20	9	12	20	9	12	20	9	12	20	9	12	20
EIIIDEU	inent n _{ef}	(mm)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)	(229)	(305)	(508)
	1-3/4	(44)	n/a	n/a	n/a	0.42	0.40	0.38	n/a	n/a	n/a	0.02	0.02	0.01	0.05	0.03	0.02	n/a	n/a	n/a
	5	(127) 0.59 0.57 0.54 (152) 0.61 0.58 0.55		0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.08	0.05	0.22	0.16	0.10	n/a	n/a	n/a	
(mm)	6			0.55	0.60	0.53	0.46	0.55	0.54	0.53	0.14	0.10	0.06	0.29	0.21	0.13	n/a	n/a	n/a	
<u>.</u> :	7	(178)	0.63	0.60	0.56	0.65	0.57	0.47	0.55	0.54	0.53	0.18	0.13	0.08	0.36	0.26	0.16	n/a	n/a	n/a
	8	(203)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.54	0.22	0.16	0.10	0.44	0.32	0.19	n/a	n/a	n/a
Ē,	9	(229)	0.67	0.63	0.58	0.75	0.64	0.51	0.57	0.56	0.54	0.26	0.19	0.12	0.53	0.38	0.23	n/a	n/a	n/a
thickness	10	(254)	0.69	0.64	0.58	0.80	0.67	0.53	0.58	0.56	0.54	0.31	0.22	0.13	0.62	0.45	0.27	n/a	n/a	n/a
ž	11	(279)	0.70	0.65	0.59	0.86	0.71	0.55	0.58	0.57	0.55	0.36	0.26	0.16	0.72	0.52	0.31	n/a	n/a	n/a
ξ	11-1/4	(286)	0.71	0.66	0.59	0.87	0.72	0.56	0.59	0.57	0.55	0.37	0.27	0.16	0.74	0.54	0.32	0.59	n/a	n/a
Concrete	12	(305)	0.72	0.67	0.60	0.91	0.75	0.57	0.59	0.57	0.55	0.41	0.30	0.18	0.82	0.59	0.35	0.61	n/a	n/a
5	13	(330)	0.74	0.68	0.61	0.97	0.79	0.59	0.60	0.58	0.56	0.46	0.33	0.20	0.92	0.67	0.40	0.63	n/a	n/a
ပိ	14	(356)	0.76	0.69	0.62	1.00	0.83	0.62	0.61	0.59	0.56	0.51	0.37	0.22	1.00	0.74	0.45	0.65	n/a	n/a
	14-1/4	(362)	0.76	0.70	0.62		0.84	0.62	0.61	0.59	0.56	0.53	0.38	0.23		0.76	0.46	0.66	0.59	n/a
distance (c_)	16	(406)	0.80	0.72	0.63		0.91	0.66	0.62	0.60	0.57	0.63	0.45	0.27		0.91	0.55	0.70	0.63	n/a
anc anc	18	(457)	0.83	0.75	0.65		1.00	0.70	0.64	0.61	0.58	0.75	0.54	0.33		1.00	0.65	0.74	0.67	n/a
<u>ist</u>	20	(508)	0.87	0.78	0.67			0.75	0.65	0.62	0.59	0.88	0.64	0.38			0.75	0.78	0.70	n/a
o de	22	(559)	0.91	0.81	0.68			0.80	0.67	0.64	0.60	1.00	0.73	0.44			0.80	0.82	0.74	n/a
/Edge	22-1/4	(565)	0.91	0.81	0.69			0.80	0.67	0.64	0.60		0.75	0.45			0.80	0.82	0.74	0.62
<u>~</u>	24	(610)	0.94	0.83	0.70			0.85	0.68	0.65	0.61		0.84	0.50			0.85	0.86	0.77	0.65
Spacing (s)	26	(660)	0.98	0.86	0.72			0.90	0.70	0.66	0.61		0.94	0.57			0.90	0.89	0.80	0.68
g.	28	(711)	1.00	0.89	0.73			0.95	0.71	0.67	0.62		1.00	0.63			0.95	0.92	0.83	0.70
Sps	30	(762)		0.92	0.75			1.00	0.73	0.68	0.63			0.70			1.00	0.96	0.86	0.73
	36	(914)		1.00	0.80				0.77	0.72	0.66			0.92				1.00	0.94	0.79
	> 48	(1219)			0.90				0.87	0.80	0.71			1.00					1.00	0.92

¹ Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

4 Spacing factor reduction in shear applicable when $c < 3^*h_{er}$, f_{AV} is applicable when edge distance, $c < 3^*h_{er}$. If $c \ge 3^*h_{er}$, then $f_{AV} = f_{AN}$.

5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3^*h_{er}$, then $f_{HV} = 1.0$.

Table 34 - Load adjustment factors for #9 rebar in uncracked concrete^{1,2,3}

													Edg	je distar	nce in sh	ear				
	#9			cing fact tension			distance n tensio		Spac	cing fact	tor in	То	⊥ ward ed	ge		and av	•		rete thic tor in sh	
uncra	cked co	ncrete		f_{\scriptscriptstyleAN}			f_{\scriptscriptstyleRN}			f_{\scriptscriptstyleAV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
Embad	lment h.,	in.	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2
EIIDeu	intentinet	(mm)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)
	1-3/4	(44)	n/a	n/a	n/a	0.22	0.16	0.10	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.01	n/a	n/a	n/a
	5-5/8	(143)	0.59	0.57	0.54	0.31	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a
(mm)	6	(152)	0.60	0.57	0.54	0.32	0.23	0.14	0.54	0.53	0.52	0.12	0.08	0.04	0.24	0.16	0.07	n/a	n/a	n/a
Ë	7	(178)	0.62	0.59	0.55	0.34	0.25	0.15	0.55	0.54	0.52	0.15	0.10	0.05	0.30	0.20	0.09	n/a	n/a	n/a
1	8	(203)	0.63	0.60	0.56	0.37	0.27	0.16	0.55	0.54	0.52	0.18	0.12	0.06	0.37	0.24	0.11	n/a	n/a	n/a
Œ)	9	(229)	0.65	0.61	0.57	0.40	0.29	0.17	0.56	0.55	0.53	0.22	0.14	0.07	0.41	0.29	0.14	n/a	n/a	n/a
ess	10	(254)	0.66	0.62	0.57	0.42	0.31	0.18	0.57	0.55	0.53	0.26	0.17	0.08	0.44	0.33	0.16	n/a	n/a	n/a
충	11	(279)	0.68	0.64	0.58	0.45	0.33	0.19	0.57	0.56	0.53	0.30	0.19	0.09	0.46	0.38	0.19	n/a	n/a	n/a
Concrete thickness	12	(305)	0.70	0.65	0.59	0.48	0.35	0.20	0.58	0.56	0.54	0.34	0.22	0.11	0.49	0.40	0.21	n/a	n/a	n/a
ete	12-7/8	(327)	0.71	0.66	0.60	0.51	0.37	0.22	0.59	0.57	0.54	0.38	0.24	0.12	0.52	0.42	0.23	0.59	n/a	n/a
ğ	13	(330)	0.71	0.66	0.60	0.51	0.37	0.22	0.59	0.57	0.54	0.38	0.25	0.12	0.52	0.42	0.24	0.59	n/a	n/a
8	14	(356)	0.73	0.67	0.60	0.54	0.39	0.23	0.59	0.57	0.54	0.43	0.28	0.13	0.55	0.44	0.27	0.61	n/a	n/a
	16	(406)	0.76	0.70	0.62	0.62	0.45	0.26	0.61	0.58	0.55	0.52	0.34	0.16	0.62	0.48	0.33	0.66	n/a	n/a
/Edge distance (c _a) /	16-1/4	(413)	0.77	0.70	0.62	0.63	0.46	0.27	0.61	0.58	0.55	0.53	0.35	0.17	0.63	0.48	0.33	0.66	0.57	n/a
anc	18	(457)	0.80	0.72	0.63	0.69	0.51	0.30	0.62	0.59	0.56	0.62	0.40	0.19	0.69	0.52	0.37	0.70	0.60	n/a
dist	20	(508)	0.83	0.75	0.65	0.77	0.56	0.33	0.63	0.60	0.56	0.73	0.47	0.23	0.77	0.56	0.39	0.73	0.64	n/a
ge	22	(559)	0.86	0.77	0.66	0.85	0.62	0.36	0.65	0.61	0.57	0.84	0.55	0.26	0.85	0.62	0.41	0.77	0.67	n/a
Ē	24	(610)	0.90	0.80	0.68	0.93	0.68	0.40	0.66	0.62	0.57	0.96	0.62	0.30	0.93	0.68	0.43	0.80	0.70	n/a
(s)	25-1/4	(641)	0.92	0.81	0.69	0.97	0.71	0.42	0.67	0.63	0.58	1.00	0.67	0.32	0.97	0.71	0.45	0.83	0.71	0.56
ъ Б	26	(660)	0.93	0.82	0.69	1.00	0.73	0.43	0.68	0.63	0.58		0.70	0.34	1.00	0.73	0.46	0.84	0.73	0.57
Spacing (s)	28	(711)	0.96	0.85	0.71		0.79	0.46	0.69	0.64	0.59		0.78	0.38		0.79	0.48	0.87	0.75	0.59
Sp	30	(762)	0.99	0.87	0.72		0.84	0.49	0.70	0.65	0.59		0.87	0.42		0.84	0.51	0.90	0.78	0.61
	36	(914)	1.00	0.94	0.77		1.00	0.59	0.74	0.68	0.61		1.00	0.55		1.00	0.59	0.99	0.85	0.67
	> 48	(1219)		1.00	0.86			0.79	0.82	0.74	0.65			0.84			0.79	1.00	0.99	0.77

Table 35 - Load adjustment factors for #9 rebar in cracked concrete^{1,2,3}

	Spacing factor												Edg	ge distar	ice in sh	ear				
	#9			cing fact tension	tor in		distance n tensio		Spac	cing fact shear4	or in	То	⊥ ward ed	ge		and av	•		rete thic tor in sh	
crac	ked con	crete		f_{AN}			$f_{\scriptscriptstyle{RN}}$			f_{\scriptscriptstyleAV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
	dment h.,	in.	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2	10-1/8	13-1/2	22-1/2
EIIDec	ament n _{ef}	(mm)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)	(257)	(343)	(572)
	1-3/4	(44)	n/a	n/a	n/a	0.41	0.39	0.38	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.03	0.02	n/a	n/a	n/a
	5-5/8	(143)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.15	0.09	n/a	n/a	n/a
(mm)	6	(152)	0.60	0.57	0.54	0.57	0.51	0.44	0.54	0.53	0.52	0.12	0.08	0.05	0.24	0.16	0.10	n/a	n/a	n/a
- in. (ı	7	(178)	0.62	0.59	0.55	0.61	0.54	0.46	0.55	0.54	0.53	0.15	0.10	0.06	0.30	0.21	0.12	n/a	n/a	n/a
	8	(203)	0.63	0.60	0.56	0.65	0.57	0.48	0.55	0.54	0.53	0.19	0.13	0.08	0.37	0.25	0.15	n/a	n/a	n/a
€	9	(229)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.22	0.15	0.09	0.44	0.30	0.18	n/a	n/a	n/a
ess	10	(254)	0.66	0.62	0.57	0.74	0.63	0.51	0.57	0.55	0.54	0.26	0.18	0.11	0.52	0.35	0.21	n/a	n/a	n/a
동	11	(279)	0.68	0.64	0.58	0.79	0.67	0.53	0.57	0.56	0.54	0.30	0.20	0.12	0.60	0.40	0.24	n/a	n/a	n/a
:≣	12	(305)	0.70	0.65	0.59	0.84	0.70	0.55	0.58	0.56	0.54	0.34	0.23	0.14	0.68	0.46	0.28	n/a	n/a	n/a
ete	12-7/8	(327)	0.71	0.66	0.60	0.88	0.73	0.56	0.59	0.57	0.55	0.38	0.26	0.15	0.76	0.51	0.31	0.59	n/a	n/a
DIC	13	(330)	0.71	0.66	0.60	0.89	0.73	0.56	0.59	0.57	0.55	0.39	0.26	0.16	0.77	0.52	0.31	0.59	n/a	n/a
ပို	14	(356)	0.73	0.67	0.60	0.94	0.77	0.58	0.60	0.57	0.55	0.43	0.29	0.17	0.86	0.58	0.35	0.62	n/a	n/a
ું	16	(406)	0.76	0.70	0.62	1.00	0.84	0.62	0.61	0.58	0.56	0.53	0.36	0.21	1.00	0.71	0.43	0.66	n/a	n/a
99	16-1/4	(413)	0.77	0.70	0.62		0.85	0.63	0.61	0.58	0.56	0.54	0.36	0.22		0.73	0.44	0.66	0.58	n/a
än	18	(457)	0.80	0.72	0.63		0.91	0.66	0.62	0.59	0.57	0.63	0.42	0.25		0.85	0.51	0.70	0.61	n/a
dist	20	(508)	0.83	0.75	0.65		0.99	0.70	0.64	0.60	0.57	0.73	0.50	0.30		0.99	0.60	0.74	0.65	n/a
<u>ae</u>	22	(559)	0.86	0.77	0.66		1.00	0.74	0.65	0.61	0.58	0.85	0.57	0.34		1.00	0.69	0.77	0.68	n/a
ñ	24	(610)	0.90	0.80	0.68			0.78	0.66	0.63	0.59	0.97	0.65	0.39			0.78	0.81	0.71	n/a
Spacing (s) / Edge distance ($c_{ m s}$ / Concrete thickness (h),	25-1/4	(641)	0.92	0.81	0.69			0.81	0.67	0.63	0.59	1.00	0.70	0.42			0.81	0.83	0.73	0.61
bu	26	(660)	0.93	0.82	0.69			0.82	0.68	0.64	0.60		0.74	0.44			0.82	0.84	0.74	0.62
oaci	28	(711)	0.96	0.85	0.71			0.87	0.69	0.65	0.60		0.82	0.49			0.87	0.87	0.76	0.65
ઝ	30	(762)	0.99	0.87	0.72			0.91	0.70	0.66	0.61		0.91	0.55			0.91	0.90	0.79	0.67
	36	(914)	1.00	0.94	0.77			1.00	0.74	0.69	0.63		1.00	0.72			1.00	0.99	0.87	0.73
	> 48	(1219)		1.00	0.86				0.83	0.75	0.68			1.00				1.00	1.00	0.84

¹ Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

⁴ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$, f_{AV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{AV} = f_{AN}$. 5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{HV} = 1.0$.

Table 36 - Load adjustment factors for #10 rebar in uncracked concrete 1,2,3

													Edd	ne distar	nce in sh	near				
	#10			cing fact	tor in		distance		Spac	ing fact	or in	To	⊥ ward ed		To	o and av	•		rete thic	
uncra	cked co	ncrete				"	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					10		ge	"	, ,	0	laci		Jai
uncra			44.44	f _{AN}	0.5	44.474	J _{RN}		44.474	f _{AV}		44.474	f _{RV}	0.5	44.474	J _{RV}		44.474	f _{HV}	0.5
Embed	lment h	in.	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25
	1 0 /4	(mm)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)
	1-3/4	(44)	n/a	n/a	n/a	0.22	0.16	0.09	n/a	n/a	n/a	0.02	0.01	0.00	0.03	0.02	0.01	n/a	n/a	n/a
(mm)	6-1/4	(159)	0.59	0.57	0.54	0.32	0.23	0.13	0.54	0.53	0.52	0.11	0.07	0.03	0.22	0.14	0.07	n/a	n/a	n/a
Ξ.	7	(178)	0.60	0.58	0.55	0.33	0.24	0.14	0.54	0.53	0.52	0.13	0.08	0.04	0.26	0.17	0.08	n/a	n/a	n/a
. <u>:</u>	8	(203)	0.62	0.59	0.55	0.36	0.25	0.15	0.55	0.54	0.52	0.16	0.10	0.05	0.31	0.20	0.10	n/a	n/a	n/a
Ē,	9	(229)	0.63	0.60	0.56	0.38	0.27	0.16	0.55	0.54	0.52	0.19	0.12	0.06	0.38	0.24	0.11	n/a	n/a	n/a
Concrete thickness (h),	10	(254)	0.65	0.61	0.57	0.40	0.29	0.17	0.56	0.55	0.53	0.22	0.14	0.07	0.42	0.29	0.13	n/a	n/a	n/a
ķ	11	(279)	0.66	0.62	0.57	0.43	0.31	0.18	0.57	0.55	0.53	0.25	0.16	0.08	0.44	0.33	0.15	n/a	n/a	n/a
hic	12	(305)	0.68	0.63	0.58	0.45	0.32	0.19	0.57	0.55	0.53	0.29	0.19	0.09	0.47	0.38	0.17	n/a	n/a	n/a
te t	13	(330)	0.69	0.64	0.59	0.48	0.34	0.20	0.58	0.56	0.54	0.33	0.21	0.10	0.49	0.39	0.20	n/a	n/a	n/a
cre	14	(356)	0.71	0.66	0.59	0.51	0.36	0.21	0.59	0.56	0.54	0.36	0.24	0.11	0.52	0.41	0.22	n/a	n/a	n/a
ő	14-1/4	(362)	0.71	0.66	0.60	0.51	0.37	0.22	0.59	0.56	0.54	0.37	0.24	0.11	0.53	0.41	0.23	0.59	n/a	n/a
	15	(381)	0.72	0.67	0.60	0.54	0.38	0.22	0.59	0.57	0.54	0.40	0.26	0.12	0.55	0.43	0.24	0.60	n/a	n/a
<u>o</u>	16	(406)	0.74	0.68	0.61	0.57	0.40	0.24	0.60	0.57	0.54	0.45	0.29	0.13	0.57	0.44	0.27	0.62	n/a	n/a
distance $(c_a)/$	17	(432)	0.75	0.69	0.61	0.60	0.43	0.25	0.60	0.58	0.55	0.49	0.32	0.15	0.60	0.46	0.29	0.64	n/a	n/a
star	18	(457)	0.77	0.70	0.62	0.64	0.46	0.27	0.61	0.58	0.55	0.53	0.35	0.16	0.64	0.48	0.32	0.66	0.57	n/a
ë	20	(508)	0.80	0.72	0.63	0.71	0.51	0.30	0.62	0.59	0.55	0.62	0.40	0.19	0.71	0.52	0.37	0.70	0.60	n/a
Edge	22	(559)	0.83	0.74	0.65	0.78	0.56	0.33	0.63	0.60	0.56	0.72	0.47	0.22	0.78	0.56	0.39	0.73	0.63	n/a
_	24	(610)	0.86	0.77	0.66	0.85	0.61	0.36	0.65	0.61	0.57	0.82	0.53	0.25	0.85	0.61	0.41	0.76	0.66	n/a
(8)	26	(660)	0.89	0.79	0.67	0.92	0.66	0.39	0.66	0.62	0.57	0.92	0.60	0.28	0.92	0.66	0.43	0.79	0.69	n/a
ing	28	(711)	0.91	0.81	0.69	0.99	0.71	0.41	0.67	0.63	0.58	1.00	0.67	0.31	0.99	0.71	0.45	0.82	0.71	0.55
Spacing (s)	30	(762)	0.94	0.83	0.70	1.00	0.76	0.44	0.68	0.64	0.58		0.74	0.35	1.00	0.76	0.47	0.85	0.74	0.57
S	36	(914)	1.00	0.90	0.74		0.91	0.53	0.72	0.66	0.60		0.98	0.45		0.91	0.54	0.94	0.81	0.63
	> 48	(1219)		1.00	0.82		1.00	0.71	0.79	0.72	0.63		1.00	0.70		1.00	0.71	1.00	0.94	0.72

Table 37 - Load adjustment factors for #10 rebar in cracked concrete 1,2,3

Table	- 01	LUau	aujusi	inchi	iacto	13 101	# 10 1C	Dai II	Clack	ieu ci	, iici et									
													Edg	je distar	nce in sh	ear				
			Spac	ing fact	or in	Edae c	distance	factor	Spac	ing fact	or in				॥ То	and av	vav	Concr	ete thic	kness
	#10			tension			n tensio		- 1	shear4		To	ward ed	ae		om edg	•	fact	or in she	ear ⁵
crac	ked con	crete		_		"	,	•						90		r	· ·	1400	,	Jai
Crac				f _{AN}			J _{RN}			f _{AV}			f _{RV}			J _{RV}			f _{HV}	
Embed	lment h _{ef}	in.	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25	11-1/4	15	25
	T 4 0/4	(mm)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)	(286)	(381)	(635)
	1-3/4	(44)	n/a	n/a	n/a	0.40	0.39	0.37	n/a	n/a	n/a	0.02	0.01	0.01	0.03	0.02	0.01	n/a	n/a	n/a
Ē	6-1/4	(159)	0.59	0.57	0.54	0.56	0.50	0.44	0.54	0.53	0.52	0.11	0.07	0.04	0.22	0.14	0.08	n/a	n/a	n/a
in. (mm)	7	(178)	0.60	0.58	0.55	0.58	0.52	0.45	0.54	0.53	0.52	0.13	0.08	0.05	0.26	0.17	0.10	n/a	n/a	n/a
.⊑ '	8	(203)	0.62	0.59	0.55	0.62	0.55	0.46	0.55	0.54	0.53	0.16	0.10	0.06	0.32	0.21	0.12	n/a	n/a	n/a
	9	(229)	0.63	0.60	0.56	0.66	0.57	0.48	0.55	0.54	0.53	0.19	0.12	0.07	0.38	0.25	0.15	n/a	n/a	n/a
) 88	10	(254)	0.65	0.61	0.57	0.70	0.60	0.49	0.56	0.55	0.53	0.22	0.14	0.09	0.44	0.29	0.17	n/a	n/a	n/a
nes	11	(279)	0.66	0.62	0.57	0.74	0.63	0.51	0.57	0.55	0.54	0.26	0.17	0.10	0.51	0.33	0.20	n/a	n/a	n/a
호	12	(305)	0.68	0.63	0.58	0.78	0.66	0.53	0.57	0.55	0.54	0.29	0.19	0.11	0.58	0.38	0.22	n/a	n/a	n/a
⊕ -	13	(330)	0.69	0.64	0.59	0.82	0.69	0.54	0.58	0.56	0.54	0.33	0.21	0.13	0.66	0.43	0.25	n/a	n/a	n/a
ē	14	(356)	0.71	0.66	0.59	0.87	0.72	0.56	0.59	0.56	0.55	0.37	0.24	0.14	0.73	0.48	0.28	n/a	n/a	n/a
ouc	14-1/4	(362)	0.71	0.66	0.60	0.88	0.73	0.56	0.59	0.57	0.55	0.38	0.25	0.15	0.75	0.49	0.29	0.59	n/a	n/a
Ŏ	15	(381)	0.72	0.67	0.60	0.91	0.75	0.57	0.59	0.57	0.55	0.41	0.26	0.16	0.82	0.53	0.31	0.61	n/a	n/a
Ω [®]	16	(406)	0.74	0.68	0.61	0.96	0.78	0.59	0.60	0.57	0.55	0.45	0.29	0.17	0.90	0.58	0.35	0.63	n/a	n/a
9	17	(432)	0.75	0.69	0.61	1.00	0.81	0.61	0.60	0.58	0.55	0.49	0.32	0.19	0.98	0.64	0.38	0.64	n/a	n/a
ţaŭ	18	(457)	0.77	0.70	0.62		0.85	0.62	0.61	0.58	0.56	0.54	0.35	0.21	1.00	0.70	0.41	0.66	0.57	n/a
dis	20	(508)	0.80	0.72	0.63		0.91	0.66	0.62	0.59	0.56	0.63	0.41	0.24		0.82	0.48	0.70	0.61	n/a
/ Edge distance ($c_{_{a}}$ / Concrete thickness (h),	22	(559)	0.83	0.74	0.65		0.98	0.69	0.63	0.60	0.57	0.72	0.47	0.28		0.94	0.56	0.73	0.63	n/a
ñ	24	(610)	0.86	0.77	0.66		1.00	0.73	0.65	0.61	0.58	0.82	0.54	0.32		1.00	0.63	0.77	0.66	n/a
(s)	26	(660)	0.89	0.79	0.67			0.77	0.66	0.62	0.58	0.93	0.60	0.36			0.71	0.80	0.69	n/a
ng	28	(711)	0.91	0.81	0.69			0.81	0.67	0.63	0.59	1.00	0.68	0.40			0.80	0.83	0.72	0.60
Spacing (s)	30	(762)	0.94	0.83	0.70			0.85	0.68	0.64	0.60		0.75	0.44			0.85	0.86	0.74	0.62
S	36	(914)	1.00	0.90	0.74			0.97	0.72	0.66	0.62		0.98	0.58			0.97	0.94	0.81	0.68
	> 48	(1219)		1.00	0.82			1.00	0.79	0.72	0.65		1.00	0.90			1.00	1.00	0.94	0.79

¹ Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

Spacing factor reduction in shear applicable when $c < 3^*h_{ef}$. $f_{AN'}$ is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$, then $f_{AV} = f_{AN}$. Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$, then $f_{HV} = 1.0$.

HIT-HY 200 Adhesive with HAS Threaded Rod

Hilti HAS threaded rod

Figure 9 - Hilti HAS threaded rod installation conditions

Dry Hammer drilling with carbide Uncracked Permissible drilling method Permissible conditions concrete concrete tipped drill bit concrete Hilti TE-CD or TE-YD Hollow Cracked Water saturated Drill Bit concrete concrete

Table 38 - Hilti HAS threaded rod specifications

Catting information		Cumbal	Lloito		1	Nominal	rod dia	meter,	d	
Setting information		Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Nominal bit diamet	er	d _o	in.	7/16	9/16	3/4	7/8	1	1-1/8	1-3/8
	minimum	h	in.	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	5
Effective	IIIIIIIIIIIIII	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
embedment	maximum	h	in.	7-1/2	10	12-1/2	15	17-1/2	20	25
	maximum	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
Diameter of fixture hole	through-set		in.	1/2	5/8	13/16¹	15/16¹	1-1/81	1-1/41	1-1/21
Diameter of fixture hole	preset		in.	7/16	9/16	11/16	13/16	15/16	1-1/8	1-3/8
Installation torque		т	ft-lb	15	30	60	100	125	150	200
installation torque		T _{inst}	(Nm)	(20)	(40)	(80)	(136)	(169)	(203)	(271)
Minimum concrete	thickness	h	in.	h _{ef} +1	-1/4			h _{ef} +2d _o		
William Concrete	ti iloni icaa	h _{min}	(mm)	(h _{ef} -	+30)			n _{ef} · Zu _o		
Minimum adda diat	anaa		in.	1-3/4	1-3/4	2 ²	2-1/82	2-1/42	2-3/42	3-1/82
Minimum edge dist	ance	C _{min}	(mm)	(45)	(45)	(50) ²	(55) ²	(60) ²	(70) ²	(80) ²
Minimum anabar ar	naoina		in.	1-7/8	2-1/2	3-1/8	3-3/4	4-3/4	5	6-1/4
Minimum anchor sp	Dacing	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(159)

Figure 10 -Hilti HAS threaded rods

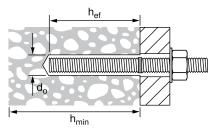


Figure 11 - Installation with (2) washers

¹ Install using (2) washers. See Figure 11.

² Edge distance of 1-3/4-inch (44mm) is permitted provided the installation torque is reduced to 0.30 T_{inst} for 5d < s < 16-in. and to 0.5 T_{inst} for s > 16-in.

Table 39 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for threaded rod in uncracked concrete 1,2,3,4,5,6,7,8,9

Nominal			Tension	— ФN _n			Shear	— ФV _n	
anchor diameter	Effective embedment	f' _c = 2,500 psi (17.2 MPa)	f' = 3,000 psi (20.7 MPa)	f' _c = 4,000 psi (27.6 MPa)	f' _c = 6,000 psi (41.4 MPa)	f' = 2,500 psi (17.2 MPa)	f' _c = 3,000 psi (20.7 MPa)	f' _c = 4,000 psi (27.6 MPa)	f' _c = 6,000 ps (41.4 MPa)
in.	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
	2-3/8	2,855	3,125	3,610	4,405	3,075	3,370	3,890	4,745
	(60)	(12.7)	(13.9)	(16.1)	(19.6)	(13.7)	(15.0)	(17.3)	(21.1)
	3-3/8	4,835	5,300	6,015	6,260	10,415	11,410	12,950	13,490
3/8	(86)	(21.5)	(23.6)	(26.8)	(27.8)	(46.3)	(50.8)	(57.6)	(60.0)
-, -	4-1/2	7,445	7,790	8,020	8,350	16,035	16,780	17,270	17,985
	(114) 7-1/2	(33.1) 12,750	(34.7) 12,985	(35.7) 13,365	(37.1) 13,915	(71.3) 27,460	(74.6) 27,965	(76.8) 28,785	(80.0) 29,975
	(191)	(56.7)	(57.8)	(59.5)	(61.9)	(122.1)	(124.4)	(128.0)	(133.3)
	2-3/4	3,555	3,895	4,500	5,510	7,660	8,395	9,690	11,870
	(70)	(15.8)	(17.3)	(20.0)	(24.5)	(34.1)	(37.3)	(43.1)	(52.8)
	4-1/2	7,445	8,155	9,420	11,135	16,035	17,570	20,285	23,980
1/2	(114)	(33.1)	(36.3)	(41.9)	(49.5)	(71.3)	(78.2)	(90.2)	(106.7)
1/2	6	11,465	12,560	14,255	14,845	24,690	27,045	30,700	31,970
	(152)	(51.0)	(55.9)	(63.4)	(66.0)	(109.8)	(120.3)	(136.6)	(142.2)
	10	22,665	23,085	23,755	24,740	48,820	49,720	51,170	53,285
	(254) 3-1/8	(100.8) 4,310	(102.7) 4,720	(105.7) 5,450	(110.0) 6,675	(217.2) 9,280	(221.2) 10,165	(227.6) 11,740	(237.0) 14,380
	(79)	(19.2)	(21.0)	(24.2)	(29.7)	(41.3)	(45.2)	(52.2)	(64.0)
	5-5/8	10,405	11,400	13,165	16,120	22,415	24,550	28,350	34,720
- 10	(143)	(46.3)	(50.7)	(58.6)	(71.7)	(99.7)	(109.2)	(126.1)	(154.4)
5/8	7-1/2	16,020	17,550	20,265	23,195	34,505	37,800	43,650	49,955
	(19 ¹ 1)	(71.3)	(78.1)	(90.1)	(103.2)	(153.5)	(168.1)	(194.2)	(222.2)
	12-1/2	34,470	36,070	37,120	38,655	74,245	77,685	79,955	83,260
	(318)	(153.3)	(160.4)	(165.1)	(171.9)	(330.3)	(345.6)	(355.7)	(370.4)
	3-1/2	5,105	5,595	6,460	7,910	11,000	12,050	13,915	17,040
	(89)	(22.7)	(24.9)	(28.7)	(35.2)	(48.9)	(53.6)	(61.9)	(75.8)
	6-3/4 (171)	13,680 (60.9)	14,985 (66.7)	17,305 (77.0)	21,190 (94.3)	29,460 (131.0)	32,275 (143.6)	37,265 (165.8)	45,645 (203.0)
3/4	9	21,060	23,070	26,640	32,625	45,360	49,690	57,375	70,270
	(229)	(93.7)	(102.6)	(118.5)	(145.1)	(201.8)	(221.0)	(255.2)	(312.6)
	15	45,315	49,640	53,455	55,665	97,600	106,915	115,130	119,895
	(381)	(201.6)	(220.8)	(237.8)	(247.6)	(434.1)	(475.6)	(512.1)	(533.3)
	3-1/2	5,105	5,595	6,460	7,910	11,000	12,050	13,915	17,040
	(89)	(22.7)	(24.9)	(28.7)	(35.2)	(48.9)	(53.6)	(61.9)	(75.8)
	7-7/8	17,235	18,885	21,805	26,705	37,125	40,670	46,960	57,515
7/8	(200)	(76.7)	(84.0)	(97.0)	(118.8)	(165.1)	(180.9)	(208.9)	(255.8)
	10-1/2 (267)	26,540 (118.1)	29,070 (129.3)	33,570 (149.3)	41,115 (182.9)	57,160 (254.3)	62,615 (278.5)	72,300 (321.6)	88,550 (393.9)
	17-1/2	57,100	62,550	72,230	75,770	122,990	134,730	155,570	163,190
	(445)	(254.0)	(278.2)	(321.3)	(337.0)	(547.1)	(599.3)	(692.0)	(725.9)
	4	6,240	6,835	7,895	9,665	13,440	14,725	17,000	20,820
	(102)	(27.8)	(30.4)	(35.1)	(43.0)	(59.8)	(65.5)	(75.6)	(92.6)
	9	21,060	23,070	26,640	32,625	45,360	49,690	57,375	70,270
1	(229)	(93.7)	(102.6)	(118.5)	(145.1)	(201.8)	(221.0)	(255.2)	(312.6)
•	12	32,425	35,520	41,015	50,230	69,835	76,500	88,335	108,190
	(305)	(144.2)	(158.0)	(182.4)	(223.4)	(310.6)	(340.3)	(392.9)	(481.3)
	(508)	69,765 (310.3)	76,425 (340.0)	88,245 (392.5)	98,960 (440.2)	150,265 (668.4)	164,605 (732.2)	190,070 (845.5)	213,150 (948.1)
	5	8,720	9,555	11,030	13,510	18,785	20,575	23,760	29,100
	(127)	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)
	11-1/4	29,430	32,240	37,230	45,595	63,395	69,445	80,185	98,205
1 1/4	(286)	(130.9)	(143.4)	(165.6)	(202.8)	(282.0)	(308.9)	(356.7)	(436.8)
1-1/4	15	45,315	49,640	57,320	70,200	97,600	106,915	123,455	151,200
	(381)	(201.6)	(220.8)	(255.0)	(312.3)	(434.1)	(475.6)	(549.2)	(672.6)
	25	97,500	106,805	123,330	151,045	210,000	230,045	265,630	325,330
	(635)	(433.7)	(475.1)	(548.6)	(671.9)	(934.1)	(1023.3)	(1181.6)	(1447.1)

 $^{1\,}$ See section 3.1.8 for explanation on development of load values.

² See section 3.1.8 to convert design strength (factored resistance) value to ASD value.

³ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

⁴ Apply spacing, edge distance, and concrete thickness factors in tables 42 - 55 as necessary to the above values. Compare to the steel values in table 41. The lesser of the values is to be used for the design.

⁵ Data is for temperature range A: Max. short term temperature = 130° F (55° C), max. long term temperature = 110° F (43° C).

For temperature range B: Max. short term temperature = 176° F (80° C), max. long term temperature = 110° F (43° C) multiply above values by 0.92.

For temperature range C: Max. short term temperature = 248° F (120° C), max. long term temperature = 162° F (72° C) multiply above values by 0.78.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁶ Tabular values are for dry and water saturated concrete conditions.

⁷ Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.

⁸ Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_a as follows: For sand-lightweight, λ_a = 0.51. For all-lightweight, λ_a = 0.45.

⁹ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 40 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for threaded rod in cracked concrete 1,2,3,4,5,6,7,8,9

Nominal			Tension	— ФN _n			Shear	— ФV _n	
anchor diameter in.	Effective embedment in. (mm)	f' c = 2,500 psi (17.2 MPa) lb (kN)	f' _c = 3,000 psi (20.7 MPa) lb (kN)	f' _c = 4,000 psi (27.6 MPa) Ib (kN)	f' _c = 6,000 psi (41.4 MPa) lb (kN)	f' _c = 2,500 psi (17.2 MPa) lb (kN)	f' _c = 3,000 psi (20.7 MPa) lb (kN)	f' _c = 4,000 psi (27.6 MPa) lb (kN)	f' c = 6,000 ps (41.4 MPa) Ib (kN)
	2-3/8	1,900	1,935	1,990	2,075	2,045	2,085	2,145	2,235
	(60)	(8.5)	(8.6)	(8.9)	(9.2)	(9.1)	(9.3)	(9.5)	(9.9)
	3-3/8	2,700	2,750	2,830	2,950	5,815	5,925	6,095	6,350
3/8	(86)	(12.0)	(12.2)	(12.6)	(13.1)	(25.9)	(26.4)	(27.1)	(28.2)
3/0	4-1/2	3,600	3,665	3,775	3,930	7,755	7,900	8,130	8,465
	(114)	(16.0)	(16.3)	(16.8)	(17.5)	(34.5)	(35.1)	(36.2)	(37.7)
	7-1/2 (191)	6,000 (26.7)	6,110	6,290 (28.0)	6,550 (29.1)	12,925	13,165 (58.6)	13,550 (60.3)	14,110 (62.8)
	2-3/4	2,520	(27.2) 2,760	3,185	3,480	(57.5) 5,425	5,945	6,865	7,490
	(70)	(11.2)	(12.3)	(14.2)	(15.5)	(24.1)	(26.4)	(30.5)	(33.3)
	4-1/2	5,215	5,310	5,465	5,690	11,230	11,440	11,770	12,260
1 /0	(114)	(23.2)	(23.6)	(24.3)	(25.3)	(50.0)	(50.9)	(52.4)	(54.5)
1/2	6	6,955	7,080	7,290	7,590	14,975	15,250	15,695	16,345
	(152)	(30.9)	(31.5)	(32.4)	(33.8)	(66.6)	(67.8)	(69.8)	(72.7)
	10	11,590	11,800	12,145	12,650	24,960	25,420	26,160	27,245
	(254)	(51.6)	(52.5)	(54.0)	(56.3)	(111.0)	(113.1)	(116.4)	(121.2)
	3-1/8	3,050	3,345	3,860	4,730	6,575	7,200	8,315	10,185
	(79) 5-5/8	(13.6) 7,370	(14.9) 8,075	(17.2) 8,805	(21.0) 9,170	(29.2) 15,875	(32.0) 17,390	(37.0) 18,960	(45.3) 19,745
	(143)	(32.8)	(35.9)	(39.2)	(40.8)	(70.6)	(77.4)	(84.3)	(87.8)
5/8	7-1/2	11,200	11,405	11,740	12,225	24,120	24,565	25,280	26,330
	(19 ¹ 1)	(49.8)	(50.7)	(52.2)	(54.4)	(107.3)	(109.3)	(112.5)	(117.1)
	12-1/2	18,665	19,010	19,565	20,375	40,205	40,940	42,135	43,880
	(318)	(83.0)	(84.6)	(87.0)	(90.6)	(178.8)	(182.1)	(187.4)	(195.2)
	3-1/2	3,620	3,965	4,575	5,605	7,790	8,535	9,855	12,070
	(89)	(16.1)	(17.6)	(20.4)	(24.9)	(34.7)	(38.0)	(43.8)	(53.7)
	6-3/4 (171)	9,690 (43.1)	10,615 (47.2)	12,255 (54.5)	14,215 (63.2)	20,870 (92.8)	22,860 (101.7)	26,395 (117.4)	30,620 (136.2)
3/4	9	14,920	16,340	18,205	18,955	32,130	35,195	39,205	40,830
	(229)	(66.4)	(72.7)	(81.0)	(84.3)	(142.9)	(156.6)	(174.4)	(181.6)
	15	28,945	29,480	30,340	31,595	62,345	63,490	65,345	68,050
	(381)	(128.8)	(131.1)	(135.0)	(140.5)	(277.3)	(282.4)	(290.7)	(302.7)
	3-1/2	3,620	3,965	4,575	5,605	7,790	8,535	9,855	12,070
	(89)	(16.1)	(17.6)	(20.4)	(24.9)	(34.7)	(38.0)	(43.8)	(53.7)
	7-7/8	12,210	13,375	15,445	18,915	26,300	28,810	33,265	40,740
7/8	(200) 10-1/2	(54.3) 18,800	(59.5) 20,590	(68.7) 23,780	(84.1) 26,415	(117.0) 40,490	(128.2) 44,355	(148.0) 51,215	(181.2) 56,895
	(267)	(83.6)	(91.6)	(105.8)	(117.5)	(180.1)	(197.3)	(227.8)	(253.1)
	17-1/2	40,335	41,080	42,280	44,025	86,880	88,475	91,060	94,830
	(445)	(179.4)	(182.7)	(188.1)	(195.8)	(386.5)	(393.6)	(405.1)	(421.8)
	4	4,420	4,840	5,590	6,845	9,520	10,430	12,040	14,750
	(102)	(19.7)	(21.5)	(24.9)	(30.4)	(42.3)	(46.4)	(53.6)	(65.6)
	9	14,920	16,340	18,870	23,110	32,130	35,195	40,640	49,775
1	(229)	(66.4)	(72.7)	(83.9)	(102.8)	(142.9)	(156.6)	(180.8)	(221.4)
	12	22,965	25,160	29,050	35,440	49,465	54,190	62,570	76,330 (339.5)
	(305)	(102.2) 49,415	(111.9) 54,135	(129.2) 56,720	(157.6) 59,065	(220.0) 106,435	(241.0) 116,595	(278.3) 122,160	127,215
	(508)	(219.8)	(240.8)	(252.3)	(262.7)	(473.4)	(518.6)	(543.4)	(565.9)
	5	6,175	6,765	7,815	9,570	13,305	14,575	16,830	20,610
	(127)	(27.5)	(30.1)	(34.8)	(42.6)	(59.2)	(64.8)	(74.9)	(91.7)
	11-1/4	20,850	22,840	26,370	32,295	44,905	49,190	56,800	69,565
1-1/4	(286)	(92.7)	(101.6)	(117.3)	(143.7)	(199.7)	(218.8)	(252.7)	(309.4)
· 1/ 1	15	32,095	35,160	40,600	49,725	69,135	75,730	87,445	107,100
	(381)	(142.8)	(156.4)	(180.6)	(221.2)	(307.5)	(336.9)	(389.0)	(476.4)
	25	69,060	75,655	87,360	96,120	148,750	162,945	188,155	207,030
	(635)	(307.2)	(336.5) ent of load value	(388.6)	(427.6)	(661.7)	(724.8)	(837.0)	(920.9)

¹ See section 3.1.8 for explanation on development of load values.

² See section 3.1.8 to convert design strength (factored resistance) value to ASD value.

³ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

⁴ Apply spacing, edge distance, and concrete thickness factors in tables 42 - 55 as necessary to the above values. Compare to the steel values in table 41. The lesser of the values is to be used for the design.

⁵ Data is for temperature range A: Max. short term temperature = 130° F (55° C), max. long term temperature = 110° F (43° C). For temperature range B: Max. short term temperature = 176° F (80° C), max. long term temperature = 110° F (43° C) multiply above values by 0.92. For temperature range C: Max. short term temperature = 248° F (120° C), max. long term temperature = 162° F (72° C) multiply above values by 0.78. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁶ Tabular values are for dry and water saturated concrete conditions.

Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.

Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_a as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.

⁹ Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors: 3/8-in diameter - $\alpha_{seis} = 0.66$ 1/2-in, 5/8-in, and 1-1/4-in diameter - $\alpha_{\mbox{\tiny seis}}$ =0.74

^{3/4}-in and 7/8-in diameter - $\alpha_{seis} = 0.75$ 1-in diameter - α_{seis} = 0.71

See section 3.1.8 for additional information on seismic applications.

Table 41 - Steel design strength for Hilti HAS threaded rods for use with ACI 318-14 Chapter 17

		′-36 / HAS-V-3 ГМ F1554 Gr.			-55 / HAS-E-5 M F1554 Gr. 5		-	05 and HAS-B 93 B7 and AS Gr.1054		ASTM	S-R stainless : F593 (3/8-in t A193 (1-1/8-in	o 1-in) ⁵
Nominal anchor diameter in.	Tensile¹ ΦN _{sa} lb (kN)	Shear ² ΦV_{sa} Ib (kN)	Seismic Shear³ $\Phi V_{sa,eq}$ Ib (kN)	Tensile¹ ΦΝ _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ $\Phi V_{_{\mathrm{sa,eq}}}$ Ib (kN)	Tensile¹ ΦN _{sa} lb (kN)	Shear ² ΦV_{sa} Ib (kN)	Seismic Shear ³ $\Phi V_{_{SA,\Theta Q}}$ Ib (kN)	Tensile¹ ΦΝ _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear³ ΦV _{sa,eq} Ib (kN)
3/8	3,370	1,750	1,050	4,360	2,270	1,590	7,270	3,780	2,645	5,040	2,790	1,955
3/6	(15.0)	(7.8)	(4.7)	(19.4)	(10.1)	(7.1)	(32.3)	(16.8)	(11.8)	(22.4)	(12.4)	(8.7)
1/2	6,175	3,210	1,925	7,985	4,150	2,905	13,305	6,920	4,845	9,225	5,110	3,575
1/2	(27.5)	(14.3)	(8.6)	(35.5)	(18.5)	(12.9)	(59.2)	(30.8)	(21.6)	(41.0)	(22.7)	(15.9)
5/8	9,835	5,110	3,065	12,715	6,610	4,625	21,190	11,020	7,715	14,690	8,135	5,695
5/6	(43.7)	(22.7)	(13.6)	(56.6)	(29.4)	(20.6)	(94.3)	(49.0)	(34.3)	(65.3)	(36.2)	(25.3)
3/4	14,550	7,565	4,540	18,820	9,785	6,850	31,360	16,310	11,415	18,485	10,235	7,165
3/4	(64.7)	(33.7)	(20.2)	(83.7)	(43.5)	(30.5)	(139.5)	(72.6)	(50.8)	(82.2)	(45.5)	(31.9)
7/8	20,085	10,445	6,265	25,975	13,505	9,455	43,285	22,510	15,755	25,510	14,125	9,890
1/0	(89.3)	(46.5)	(27.9)	(115.5)	(60.1)	(42.1)	(192.5)	(100.1)	(70.1)	(113.5)	(62.8)	(44.0)
1	26,350	13,700	8,220	34,075	17,720	12,405	56,785	29,530	20,670	33,465	18,535	12,975
'	(117.2)	(60.9)	(36.6)	(151.6)	(78.8)	(55.2)	(252.6)	(131.4)	(91.9)	(148.9)	(82.4)	(57.7)
1-1/4	42,160	21,920	13,150	54,515	28,345	19,840	90,855	47,245	33,070	41,430	21,545	12,925
1-1/4	(187.5)	(97.5)	(58.5)	(242.5)	(126.1)	(88.3)	(404.1)	(210.2)	(147.1)	(184.3)	(95.8)	(57.5)

Tensile = φ A _{seN} f_{uta} as noted in ACI 318-14 17.4.1.2
 Shear = φ 0.60 A _{seV} f_{uta} as noted in ACI 318-14 17.5.1.2b.
 Seismic Shear = α _{V,sels} φ V_{sa} : Reduction factor for seismic shear only. See ACI 318 for additional information on seismic applications.
 HAS-V, HAS-E (3/8-in to 1-1/4-in), HAS-B, and HAS-B (Class 1; 1-1/4-in) threaded roots are considered ductile steel elements (including HDG rods).

⁵ HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements.

^{6 3/8-}inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

Table 42 - Load adjustment factors for 3/8-in. diameter threaded rods in uncracked concrete^{1,2,3}

																									_	
																	Edge	e distar	nce in s	hear						
	3/8-in						Edg	ge dista	ance fa	ctor							L			To an	d away	/	Co	ncrete	thickne	ess
	uncrack	ed	Spaci	ng fact	or in te	ension		in te	nsion		Spac	ing fac	tor in s	hear4		Towar	d edge			from	edge		f	actor in	n shear	-5
	concre	te		f	AN			f	RN			f	A1/			f	RV			f	-			f	HV	
Foot	edment	in.	2-3/8		4-1/2	7-1/2	2-3/8	3-3/8		7-1/2	2-3/8		4-1/2	7-1/2	2-3/8		4-1/2	7-1/2	2-3/8	3-3/8		7-1/2	2-3/8			7-1/2
	h _e	(mm)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.35	0.28	0.22	0.13	n/a	n/a	n/a	n/a	0.23	0.07	0.05	0.03	0.35	0.14	0.09	0.05	n/a	n/a	n/a	n/a
	1-7/8	(48)	0.58	0.58	0.57	0.54	0.36	0.29	0.22	0.13	0.57	0.53	0.52	0.52	0.25	0.08	0.05	0.03	0.36	0.16	0.10	0.06	n/a	n/a	n/a	n/a
(mm)	2	(51)	0.59	0.59	0.57	0.54	0.37	0.30	0.23	0.13	0.57	0.53	0.52	0.52	0.28	0.09	0.06	0.03	0.37	0.17	0.11	0.07	n/a	n/a	n/a	n/a
Ε.	3	(76)	0.63	0.63	0.61	0.57	0.48	0.36	0.28	0.16	0.61	0.55	0.54	0.53	0.51	0.16	0.10	0.06	0.48	0.32	0.21	0.12	n/a	n/a	n/a	n/a
.⊑	3-5/8	(92)	0.66	0.66	0.63	0.58	0.56	0.41	0.31	0.18	0.63	0.56	0.54	0.53	0.68	0.21	0.14	0.08	0.56	0.41	0.27	0.16	0.72	n/a	n/a	n/a
Ē,	4	(102)	0.68	0.68	0.65	0.59	0.62	0.44	0.33	0.19	0.64	0.57	0.55	0.53	0.79	0.24	0.16	0.09	0.62	0.44	0.32	0.19	0.75	n/a	n/a	n/a
	4-5/8	(117)	0.71	0.71	0.67	0.60	0.71	0.49	0.36	0.21	0.66	0.58	0.56	0.54	0.98	0.30	0.20	0.12	0.71	0.49	0.36	0.21	0.81	0.55	n/a	n/a
kne	5	(127)	0.72	0.72	0.69	0.61	0.77	0.52	0.38	0.22	0.68	0.58	0.56	0.54	1.00	0.34	0.22	0.13	0.77	0.52	0.38	0.22	0.84	0.57	n/a	n/a
thickness	5-3/4	(146)	0.76	0.76	0.71	0.63	0.89	0.59	0.43	0.25	0.70	0.59	0.57	0.55		0.42	0.27	0.16	0.89	0.59	0.43	0.25	0.91	0.61	0.53	n/a
je.	6	(152)	0.77	0.77	0.72	0.63	0.93	0.62	0.45	0.26	0.71	0.60	0.57	0.55		0.45	0.29	0.17	0.93	0.62	0.45	0.26	0.92	0.63	0.54	n/a
Concrete	7	(178)	0.81	0.81	0.76	0.66	1.00	0.72	0.53	0.30	0.75	0.61	0.59	0.56		0.57	0.37	0.21	1.00	0.72	0.53	0.30	1.00	0.68	0.58	n/a
Ō	8	(203)	0.86	0.86	0.80	0.68		0.82	0.60	0.35	0.79	0.63	0.60	0.57		0.69	0.45	0.26		0.82	0.60	0.35		0.72	0.63	n/a
/ (ຶ່ວ)	8-3/4	(222)	0.89	0.89	0.82	0.69		0.90	0.66	0.38	0.81	0.64	0.61	0.57		0.79	0.51	0.30		0.90	0.66	0.38		0.76	0.65	0.55
	9	(229)	0.90	0.90	0.83	0.70		0.93	0.68	0.39	0.82	0.65	0.61	0.58		0.83	0.54	0.31		0.93	0.68	0.39		0.77	0.66	0.55
distance	10	(254)	0.95	0.95	0.87	0.72		1.00	0.75	0.43	0.86	0.66	0.62	0.59		0.97	0.63	0.37		1.00	0.75	0.43		0.81	0.70	0.58
dista	11	(279)	0.99	0.99	0.91	0.74			0.83	0.48	0.89	0.68	0.63	0.59		1.00	0.72	0.42			0.83	0.48		0.85	0.73	0.61
	12	(305)	1.00	1.00	0.94	0.77			0.90	0.52	0.93	0.70	0.65	0.60			0.83	0.48			0.90	0.52		0.88	0.77	0.64
Edge	14	(356)		1.00	1.00	0.81			1.00	0.61	1.00	0.73	0.67	0.62			1.00	0.61			1.00	0.61		0.96	0.83	0.69
/ (s)	16	(406)				0.86				0.70	l	0.76	0.70	0.64				0.74				0.70		1.00	0.88	0.74
	18	(457)				0.90	L			0.78		0.79	0.72	0.65				0.89				0.78			0.94	0.78
Spacing	24	(610)				1.00	<u> </u>			1.00		0.89	0.79	0.70				1.00				1.00			1.00	0.91
Sp	30	(762)					ļ				ļ	0.99	0.87	0.76												1.00
	36	(914)										1.00	0.94	0.81												<u> </u>
	>48	(1219)											1.00	0.91												

Table 43 - Load adjustment factors for 3/8-in. diameter threaded rods in cracked concrete^{1,2,3}

		Edge distance															Edge	e distar	nce in s	hear						
							Edg	ge dista	ance fa	ctor							L			∥ To an	d away	,	Co	ncrete	thickne	ess
	3/8-in		Spaci	ing fact	or in te	ension	Ì	in te	nsion		Spac	ing fac	tor in s	hear4			– d edge			from	edge		f	actor in	n shear	-5
crae	cked co	ncrete	i i	f	ANI			f	RN		,	- ,	AV			f	DI/			f	RV			f	LIV/	
Emb	edment	in.	2-3/8			7-1/2	2-3/8			7-1/2	2-3/8		4-1/2	7-1/2	2-3/8			7-1/2	2-3/8		4-1/2	7-1/2	2-3/8			7-1/2
	h _{ef}	(mm)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)	(60)	(86)	(114)	(191)	(60)	(86)		(191)	(60)	(86)	(114)	(191)	(60)	,	(114)	(191)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.52	0.52	0.49	0.43	n/a	n/a	n/a	n/a	0.25	0.09	0.07	0.04	0.49	0.18	0.14	0.08	n/a	n/a	n/a	n/a
	1-7/8	(48)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.57	0.54	0.53	0.52	0.27	0.10	0.08	0.05	0.54	0.20	0.15	0.09	n/a	n/a	n/a	n/a
(mm)	2	(51)	0.59	0.59	0.57	0.54	0.55	0.55	0.51	0.44	0.57	0.54	0.53	0.52	0.30	0.11	0.08	0.05	0.55	0.22	0.17	0.10	n/a	n/a	n/a	n/a
in.	3	(76)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.61	0.56	0.55	0.53	0.55	0.20	0.15	0.09	0.66	0.41	0.30	0.18	n/a	n/a	n/a	n/a
.⊑	3-5/8	(92)	0.66	0.66	0.63	0.58	0.74	0.74	0.66	0.53	0.64	0.57	0.56	0.54	0.73	0.27	0.20	0.12	0.74	0.54	0.40	0.24	0.74	n/a	n/a	n/a
Ē,	4	(102)	0.68	0.68	0.65	0.59	0.79	0.79	0.70	0.55	0.65	0.58	0.56	0.55	0.85	0.31	0.23	0.14	0.79	0.63	0.47	0.28	0.77	n/a	n/a	n/a
Concrete thickness	4-5/8	(117)	0.71	0.71	0.67	0.60	0.87	0.87	0.76	0.58	0.67	0.59	0.57	0.55	1.00	0.39	0.29	0.17	0.87	0.78	0.58	0.35	0.83	0.60	n/a	n/a
š	5	(127)	0.72	0.72	0.69	0.61	0.92	0.92	0.80	0.60	0.69	0.60	0.58	0.56		0.44	0.33	0.20	0.92	0.87	0.66	0.39	0.86	0.62	n/a	n/a
ţ	5-3/4	(146)	0.76	0.76	0.71	0.63	1.00	1.00	0.88	0.64	0.71	0.61	0.59	0.56		0.54	0.40	0.24	1.00	1.00	0.81	0.49	0.93	0.66	0.60	n/a
ete	6	(152)	0.77	0.77	0.72	0.63			0.91	0.66	0.72	0.62	0.60	0.57		0.57	0.43	0.26			0.86	0.52	0.95	0.68	0.62	n/a
Ď	7	(178)	0.81	0.81	0.76	0.66			1.00	0.72	0.76	0.63	0.61	0.58		0.72	0.54	0.33			1.00	0.65	1.00	0.73	0.67	n/a
S	8	(203)	0.86	0.86	0.80	0.68				0.78	0.80	0.65	0.63	0.59		0.88	0.66	0.40				0.78		0.78	0.71	n/a
(c³) /	8-3/4	(222)	0.89	0.89	0.82	0.69				0.83	0.83	0.67	0.64	0.60		1.00	0.76	0.46				0.83		0.82	0.74	0.63
9	9	(229)	0.90	0.90	0.83	0.70				0.85	0.84	0.67	0.64	0.60			0.79	0.47				0.85		0.83	0.76	0.64
anc	10	(254)	0.95	0.95	0.87	0.72				0.91	0.87	0.69	0.66	0.61			0.93	0.56				0.91		0.88	0.80	0.67
distance	11	(279)	0.99	0.99	0.91	0.74				0.98	0.91	0.71	0.67	0.62			1.00	0.64				0.98		0.92	0.84	0.70
ge	12	(305)	1.00	1.00	0.94	0.77				1.00	0.95	0.73	0.69	0.64				0.73				1.00		0.96	0.87	0.74
Edge	14	(356)			1.00	0.81					1.00	0.77	0.72	0.66				0.92						1.00	0.94	0.79
/ (s)	16	(406)				0.86						0.81	0.75	0.68				1.00							1.00	0.85
) g	18	(457)				0.90					ļ	0.85	0.79	0.70											<u> </u>	0.90
Spacing	24	(610)				1.00	ļ				ļ	0.96	0.88	0.77												1.00
Sp	30	(762)					L				<u> </u>	1.00	0.98	0.84												
	36	(914)									L		1.00	0.91											<u> </u>	<u> </u>
	>48	(1219)												1.00												

¹ Linear interpolation not permitted

Shaded area with reduced edge distance is permitted provided the installation torque is reduced to 0.30 T_{max} for 5d ≤ s ≤ 16-in. and to 0.5 T_{max} for s > 16-in.

When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

⁴ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$, f_{AV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{AV} = f_{AN}$. 5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{HV} = 1.0$.

Table 44 - Load adjustment factors for 1/2-in. diameter threaded rods in uncracked concrete^{1,2,3}

																	Edge	e distar	nce in s	hear						
	1/2-in						Edo	ge dista	ınce fa	ctor							L		II	To an	d awa	ıy	Co	ncrete	thickne	ess
	uncrack	ed	Spaci	ng fact	tor in te	ension		in ter	nsion		Spac	ing fac	tor in s	hear4		Toward	d edge			from	edge		f	actor in	n shear	-5
	concret	te		f_{j}	AN			f_{\parallel}	RN			f	AV			f	RV			f	RV			f_{\parallel}	HV	
Emb	edment	in.	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10
	h _{ef}	(mm)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.34	0.25	0.19	0.11	n/a	n/a	n/a	n/a	0.10	0.05	0.03	0.02	0.21	0.11	0.07	0.03	n/a	n/a	n/a	n/a
Ê	2-1/2	(64)	0.58	0.58	0.57	0.54	0.41	0.28	0.22	0.13	0.55	0.53	0.53	0.52	0.18	0.09	0.06	0.03	0.35	0.18	0.12	0.06	n/a	n/a	n/a	n/a
(mm)	3	(76)	0.60	0.60	0.58				0.24	0.14	0.56	0.54	0.53	0.52	0.23	0.12	0.08	0.04	0.46	0.24	0.15	0.08	n/a	n/a	n/a	n/a
.⊑	4	(102)	0.63	0.63	0.61	0.57	0.57	0.35	0.27	0.16	0.58	0.55	0.54	0.53	0.36	0.18	0.12	0.06	0.57	0.35	0.24	0.12	0.58	n/a	n/a	n/a
÷,	5	(127)	0.67	0.67	0.64	0.58	0.71	0.41	0.31	0.18	0.60	0.57	0.55	0.53	0.50	0.26	0.17	0.08	0.71	0.41	0.31	0.17	0.65	n/a	n/a	n/a
Concrete thickness (h),	5-3/4	(146)	0.69	0.69	0.66	0.60	0.81	0.45	0.34	0.20	0.62	0.58	0.56	0.54	0.61	0.32	0.21	0.10	0.81	0.45	0.34	0.20	0.69	0.56	n/a	n/a
nes	6	(152)	0.70	0.70	0.67	0.60	0.85	0.46	0.35	0.20	0.63	0.58	0.56	0.54	0.65	0.34	0.22	0.11	0.85	0.46	0.35	0.20	0.71	0.57	n/a	n/a
호	7	(178)	0.74	0.74	0.69	0.62	0.96	0.53	0.39	0.23	0.65	0.59	0.57	0.54	0.82	0.42	0.28	0.14	0.96	0.53	0.39	0.23	0.77	0.61	n/a	n/a
ė	7-1/4	(184)	0.74	0.74	0.70	0.62	0.98	0.54	0.40	0.23	0.65	0.60	0.57	0.55	0.87	0.45	0.29	0.15	0.98	0.54	0.40	0.23	0.78	0.62	0.54	n/a
cret	8	(203)	0.77	0.77	0.72	0.63	1.00	0.60	0.44	0.26	0.67	0.61	0.58	0.55	1.00	0.52	0.34	0.17	1.00	0.60	0.44	0.26	0.82	0.66	0.57	n/a
ουο	9	(229)	0.80	0.80	0.75	0.65		0.68	0.50	0.29	0.69	0.62	0.59	0.56		0.62	0.40	0.20		0.68	0.50	0.29	0.87	0.70	0.60	n/a
_	10	(254)	0.84	0.84	0.78	0.67		0.75	0.55	0.32	0.71	0.63	0.60	0.56		0.72	0.47	0.24		0.75	0.55	0.32	0.92	0.73	0.64	n/a
ြိ	11-1/4	(286)	0.88	0.88	0.81	0.69		0.84	0.62	0.36	0.74	0.65	0.61	0.57		0.86	0.56	0.28		0.84	0.62	0.36	0.97	0.78	0.67	0.54
distance	12	(305)	0.90	0.90	0.83	0.70		0.90	0.66	0.39	0.75	0.66	0.62	0.58		0.95	0.62	0.31		0.90	0.66	0.39	1.00	0.80	0.70	0.55
star	14	(356)	0.97	0.97	0.89	0.73		1.00	0.77	0.45	0.79	0.69	0.64	0.59		1.00	0.78	0.39		1.00	0.77	0.45		0.87	0.75	0.60
ġ	16	(406)	1.00	1.00	0.94	0.77			0.88	0.52	0.83	0.72	0.66	0.60			0.95	0.48			0.88	0.52		0.93	0.80	0.64
Edge	18	(457)			1.00	0.80			0.99	0.58	0.88	0.74	0.68	0.62			1.00	0.58			0.99	0.58		0.98	0.85	0.68
_	20	(508)				0.83			1.00	0.64	0.92	0.77	0.70	0.63				0.67			1.00	0.64		1.00	0.90	0.72
(S)	22	(559)				0.87				0.71	0.96	0.80	0.72	0.64				0.78				0.71			0.94	0.75
pacing	24	(610)				0.90				0.77	1.00	0.82	0.74	0.65				0.89				0.77			0.98	0.78
pac	30	(762)				1.00				0.97		0.90	0.80	0.69				1.00				0.97			1.00	0.88
S	36	(914)								1.00		0.98	0.86	0.73								1.00				0.96
	>48	(1219)										1.00	0.98	0.81												1.00

Table 45 - Load adjustment factors for 1/2-in. diameter threaded rods in cracked concrete^{1,2,3}

				-													Edge	e distar	nce in s	hear						
	1/2-in						Edg	ge dista		ctor									II		d awa	У		ncrete		
	cracke	d	Spaci	ng tact	tor in te	ension		in ter	nsion		Spac	ing fac	tor in s	hear4		Iowar	d edge			from	eage		†	actor in	n shear	9
	concret	te		f	AN			f_{\parallel}	RN			f	AV			f	RV			f	RV			f_{\parallel}	HV	
Emb	edment	in.	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10	2-3/4	4-1/2	6	10
	h _{ef}	(mm)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)	(70)	(114)	(152)	(254)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.48	0.48	0.45	0.41	n/a	n/a	n/a	n/a	0.10	0.05	0.04	0.02	0.21	0.11	0.08	0.05	n/a	n/a	n/a	n/a
(mm)	2-1/2	(64)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.55	0.53	0.53	0.52	0.18	0.09	0.07	0.04	0.35	0.19	0.14	0.08	n/a	n/a	n/a	n/a
	3	(76)	0.60	0.60	0.58	0.55	0.58	0.58	0.53	0.46	0.56	0.54	0.53	0.52	0.23	0.12	0.09	0.06	0.47	0.25	0.18	0.11	n/a	n/a	n/a	n/a
.⊑	4	(102)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.58	0.55	0.55	0.53	0.36	0.19	0.14	0.09	0.66	0.38	0.28	0.17	0.58	n/a	n/a	n/a
É	5	(127)	0.67	0.67	0.64	0.58	0.76	0.76	0.67	0.53	0.61	0.57	0.56	0.54	0.50	0.26	0.20	0.12	0.76	0.53	0.40	0.24	0.65	n/a	n/a	n/a
Concrete thickness (h),	5-3/4	(146)	0.69	0.69	0.66	0.60	0.83	0.83	0.73	0.56	0.62	0.58	0.57	0.55	0.62	0.33	0.24	0.15	0.83	0.65	0.49	0.29	0.70	0.56	n/a	n/a
ä	6	(152)	0.70	0.70	0.67	0.60	0.85	0.85	0.75	0.57	0.63	0.58	0.57	0.55	0.66	0.35	0.26	0.16	0.85	0.70	0.52	0.31	0.71	0.57	n/a	n/a
Į.	7	(178)	0.74	0.74	0.69	0.62	0.96	0.96	0.83	0.62	0.65	0.60	0.58	0.56	0.83	0.44	0.33	0.20	0.96	0.88	0.66	0.39	0.77	0.62	n/a	n/a
ie t	7-1/4	(184)	0.74	0.74	0.70	0.62	0.98	0.98	0.85	0.63	0.65	0.60	0.58	0.56	0.88	0.46	0.35	0.21	0.98	0.92	0.69	0.42	0.78	0.63	0.57	n/a
cre	8	(203)	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.67	0.61	0.59	0.56	1.00	0.54	0.40	0.24	1.00	1.00	0.80	0.48	0.82	0.66	0.60	n/a
Ö	9	(229)	0.80	0.80	0.75	0.65			1.00	0.70	0.69	0.62	0.60	0.57		0.64	0.48	0.29			0.96	0.58	0.87	0.70	0.64	n/a
_	10	(254)	0.84	0.84	0.78	0.67				0.75	0.71	0.64	0.61	0.58		0.75	0.56	0.34			1.00	0.67	0.92	0.74	0.67	n/a
distance (cූ)	11-1/4	(286)	0.88	0.88	0.81	0.69				0.81	0.74	0.65	0.63	0.59		0.89	0.67	0.40				0.80	0.97	0.79	0.71	0.60
၁၉	12	(305)	0.90	0.90	0.83	0.70				0.85	0.75	0.66	0.64	0.60		0.98	0.74	0.44				0.85	1.00	0.81	0.74	0.62
star	14	(356)	0.97	0.97	0.89	0.73				0.95	0.79	0.69	0.66	0.61		1.00	0.93	0.56				0.95		0.88	0.80	0.67
ë	16	(406)	1.00	1.00	0.94	0.77				1.00	0.84	0.72	0.68	0.63			1.00	0.68				1.00		0.94	0.85	0.72
Edge	18	(457)			1.00	0.80					0.88	0.75	0.70	0.65				0.81						0.99	0.90	0.76
_	20	(508)				0.83					0.92	0.77	0.73	0.66				0.95						1.00	0.95	0.80
(8)	22	(559)				0.87					0.96	0.80	0.75	0.68				1.00							1.00	0.84
ing	24	(610)				0.90					1.00	0.83	0.77	0.69												0.88
Spacing	30	(762)				1.00						0.91	0.84	0.74												0.98
S	36	(914)										0.99	0.91	0.79												1.00
	>48	(1219)										1.00	1.00	0.89												

¹ Linear interpolation not permitted

Shaded area with reduced edge distance is permitted provided the installation torque is reduced to $0.30\,T_{max}$ for $5d \le s \le 16$ -in. and to $0.5\,T_{max}$ for s > 16-in.

When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

4 Spacing factor reduction in shear applicable when $c < 3^*h_{er}$, f_{AV} is applicable when edge distance, $c < 3^*h_{er}$. If $c \ge 3^*h_{er}$, then $f_{AV} = f_{AN}$.

5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3^*h_{er}$. If $c \ge 3^*h_{er}$, then $f_{HV} = 1.0$.

Table 46 - Load adjustment factors for 5/8-in. diameter threaded rods in uncracked concrete^{1,2,3}

					acing factor in Edge distance factor												Edge	distar	nce in	shear						
	5/8-ir	n.	Sp	acing	factor	in	Edg	e dista	ince fa	ctor	Sr	pacing	factor	in			L			To an	d awa	ıy	Cor	ncrete	thickn	ess
	uncrac	ked		tens	sion			in ter	nsion		·	she				Toward	– d edge)		from	edge	•	fa	actor in	n shea	r ⁵
	concre	ete		f_{i}	ANI			f_{i}	ON!			f	A\/			f	RV			f	DI/			f	ш./	
Emi	pedment	in.	3-1/8	5-5/8		12-1/2	3-1/8	5-5/8		12-1/2	3-1/8	5-5/8		12-1/2	3-1/8		7-1/2	12-1/2	3-1/8	5-5/8		12-1/2	3-1/8	5-5/8		12-1/2
	h _{ef}	(mm)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.35	0.24	0.18	0.11	n/a	n/a	n/a	n/a	0.09	0.04	0.03	0.01	0.19	0.08	0.06	0.03	n/a	n/a	n/a	n/a
	2	(51)	n/a	n/a	n/a	n/a	0.37	0.25	0.19	0.11	n/a	n/a	n/a	n/a	0.11	0.05	0.03	0.02	0.23	0.10	0.07	0.03	n/a	n/a	n/a	n/a
Ê	3-1/8	(79)	0.58	0.58	0.57	0.54	0.47	0.29	0.22	0.13	0.56	0.54	0.53	0.52	0.22	0.10	0.07	0.03	0.45	0.20	0.13	0.06	n/a	n/a	n/a	n/a
(mm)	4	(102)	0.61	0.61	0.59	0.55	0.56	0.32	0.24	0.14	0.58	0.55	0.53	0.52	0.32	0.15	0.10	0.04	0.56	0.29	0.19	0.09	n/a	n/a	n/a	n/a
⊆	4-5/8	(117)	0.62	0.62	0.60	0.56	0.62	0.35	0.26	0.15	0.59	0.55	0.54	0.52	0.40	0.18	0.12	0.06	0.62	0.35	0.24	0.11	0.60	n/a	n/a	n/a
Ē,	5	(127)	0.63	0.63	0.61	0.57	0.66	0.36	0.27	0.16	0.60	0.56	0.54	0.53	0.45	0.21	0.13	0.06	0.66	0.36	0.27	0.12	0.63	n/a	n/a	n/a
es (6	(152)	0.66	0.66	0.63	0.58	0.74	0.41	0.30	0.18	0.62	0.57	0.55	0.53	0.59	0.27	0.18	0.08	0.74	0.41	0.30	0.16	0.69	n/a	n/a	n/a
Concrete thickness	7	(178)	0.69	0.69	0.66	0.59	0.81	0.45	0.33	0.19	0.64	0.58	0.56	0.54	0.75	0.34	0.22	0.10	0.81	0.45	0.33	0.19	0.74	n/a	n/a	n/a
Ρį	7-1/8	(181)	0.69	0.69	0.66	0.60	0.82	0.46	0.34	0.20	0.64	0.58	0.56	0.54	0.77	0.35	0.23	0.11	0.82	0.46	0.34	0.20	0.75	0.57	n/a	n/a
te t	8	(203)	0.72	0.72	0.68	0.61	0.89	0.50	0.36	0.21	0.66	0.59	0.57	0.54	0.91	0.41	0.27	0.13	0.89	0.50	0.36	0.21	0.79	0.61	n/a	n/a
cre	9	(229)	0.74	0.74	0.70	0.62	0.98	0.56	0.40	0.23	0.68	0.60	0.58	0.55	1.00	0.50	0.32	0.15	0.98	0.56	0.40	0.23	0.84	0.65	0.56	n/a
Ę	10	(254)	0.77	0.77	0.72	0.63	1.00	0.62	0.44	0.26	0.70	0.62	0.59	0.55		0.58	0.38	0.18	1.00	0.62	0.44	0.26	0.89	0.68	0.59	n/a
_	11	(279)	0.80	0.80	0.74	0.65		0.68	0.48	0.28	0.72	0.63	0.60	0.56		0.67	0.43	0.20		0.68	0.48	0.28	0.93	0.71	0.62	n/a
ြီ	12	(305)	0.82	0.82	0.77	0.66		0.74	0.53	0.31	0.74	0.64	0.60	0.56		0.76	0.50	0.23		0.74	0.53	0.31	0.97	0.75	0.65	n/a
distance	14	(356)	0.88	0.88	0.81	0.69		0.86	0.62	0.36	0.77	0.66	0.62	0.57		0.96	0.62	0.29		0.86	0.62	0.36	1.00	0.81	0.70	0.54
ista	16 18	(406)	0.93	0.93	0.86	0.71		0.99	0.70	0.41	0.81	0.69	0.64	0.58		1.00	0.76	0.35		0.99	0.70	0.41		0.86	0.75	0.58
	20	(457) (508)	1.00	1.00	0.90	0.74		1.00	0.79	0.46	0.85	0.71	0.66	0.59			1.00	0.42		1.00	0.79	0.46		0.91	0.79	0.61
Edge	22	(559)	1.00	1.00	0.94	0.77			0.00	0.51	0.69	0.75	0.67	0.60			1.00	0.50			0.00	0.57	 	1.00	0.87	0.68
/ (s)	24	(610)	-		1.00	0.73			1.00	0.62	0.97	0.78	0.03	0.63				0.65			1.00	0.62		1.00	0.07	0.71
	26	(660)	<u> </u>		1.00	0.85			1.00	0.67	1.00	0.80	0.73	0.64				0.73			1.00	0.67			0.95	0.74
Spacing	28	(711)	 			0.87				0.72	1.00	0.82	0.74	0.65				0.82				0.72	<u> </u>		0.99	0.76
Sp	30	(762)				0.90				0.77		0.85	0.76	0.66				0.91				0.77			1.00	0.79
	36	(914)				0.98				0.93		0.92	0.81	0.69				1.00				0.93				0.87
	> 48	(1219)	İ			1.00				1.00		1.00	0.92	0.75								1.00				1.00

Table 47 - Load adjustment factors for 5/8-in. diameter threaded rods in cracked concrete^{1,2,3}

																	Edge	distar	ce in	shear						
	5/8-ir	า.	Sp	acing	factor	in	Edg	e dista	ance fa	ctor	Sp	acing	factor	in		_	L		II	To an	d awa	.y	Coi	ncrete	thickn	ess
	cracke	ed		tens	sion		_	in ter	nsion			she	ear4			Toward	d edge	9		from	edge		fa	actor in	n shea	r ⁵
	concre	ete		f	AN			f	RN			f	AV			f	RV			f	RV			f	HV	
Emb	edment	in.	3-1/8			12-1/2	3-1/8			12-1/2	3-1/8			12-1/2	3-1/8			12-1/2	3-1/8	5-5/8	-	12-1/2	3-1/8	5-5/8		12-1/2
	h _{ef}	(mm)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)	(79)	(143)	(191)	(318)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.45	0.45	0.43	0.40	n/a	n/a	n/a	n/a	0.09	0.04	0.03	0.02	0.19	0.09	0.06	0.03	n/a	n/a	n/a	n/a
	2	(51)	n/a	n/a	n/a	n/a	0.46	0.46	0.44	0.41	n/a	n/a	n/a	n/a	0.11	0.05	0.03	0.02	0.23	0.10	0.07	0.04	n/a	n/a	n/a	n/a
Ê	3-1/8	(79)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.56	0.54	0.53	0.52	0.22	0.10	0.07	0.04	0.45	0.20	0.13	0.08	n/a	n/a	n/a	n/a
(mm)	4	(102)	0.61	0.61	0.59	0.55	0.59	0.59	0.55	0.46	0.58	0.55	0.53	0.52	0.33	0.15	0.10	0.06	0.59	0.30	0.19	0.12	n/a	n/a	n/a	n/a
.⊑	4-5/8	(117)	0.62	0.62	0.60	0.56	0.64	0.64	0.58	0.48	0.59	0.55	0.54	0.53	0.40	0.18	0.12	0.07	0.64	0.37	0.24	0.14	0.60	n/a	n/a	n/a
	5	(127)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.60	0.56	0.54	0.53	0.45	0.21	0.13	0.08	0.66	0.41	0.27	0.16	0.63	n/a	n/a	n/a
ss (6	(152)	0.66	0.66	0.63	0.58	0.74	0.74	0.66	0.53	0.62	0.57	0.55	0.54	0.60	0.27	0.18	0.11	0.74	0.54	0.35	0.21	0.69	n/a	n/a	n/a
Concrete thickness (h),	7	(178)	0.69	0.69	0.66	0.59	0.81	0.81	0.72	0.56	0.64	0.58	0.56	0.54	0.75	0.34	0.22	0.13	0.81	0.68	0.45	0.27	0.74	n/a	n/a	n/a_
hic	7-1/8	(181)	0.69	0.69	0.66	0.60	0.82	0.82	0.73	0.56	0.64	0.58	0.56	0.54	0.77	0.35	0.23	0.14	0.82	0.70	0.46	0.27	0.75	0.58	n/a	n/a
tet	8	(203)	0.72	0.72	0.68	0.61	0.89	0.89	0.78	0.59	0.66	0.59	0.57	0.55	0.92	0.42	0.27	0.16	0.89	0.84	0.54	0.33	0.79	0.61	n/a	n/a_
Cre	9	(229)	0.74	0.74	0.70	0.62	0.98	0.98	0.85	0.62	0.68	0.60	0.58	0.56	1.00	0.50	0.32	0.19	0.98	0.98	0.65	0.39	0.84	0.65	0.56	n/a
Š	10	(254)	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.70	0.62	0.59	0.56		0.58	0.38	0.23	1.00	1.00	0.76	0.46	0.89	0.68	0.59	n/a
_	11	(279)	0.80	0.80	0.74	0.65			0.98	0.69	0.72	0.63	0.60	0.57		0.67	0.44	0.26			0.88	0.53	0.93	0.72	0.62	n/a
ပို့ ဓ	14	(305)	0.82	0.88	0.77	0.69			1.00	0.73	0.74	0.64	0.60	0.57		0.77	0.50	0.30			1.00	0.60	1.00	0.75	0.65	n/a 0.59
auc	16	(406)	0.00	0.00	0.86	0.69				0.89	0.78	0.69	0.62	0.60		1.00	0.63	0.36				0.76	1.00	0.86	0.75	0.63
distance	18	(457)	0.93	0.93	0.90	0.71				0.09	0.85	0.09	0.66	0.61		1.00	0.77	0.46				0.09		0.92	0.79	0.67
g Se	20	(508)	1.00	1.00	0.94	0.77				1.00	0.89	0.73	0.67	0.62			1.00	0.64				1.00		0.97	0.84	0.71
Edge	22	(559)	1.00	1.00	0.99	0.79				1.00	0.93	0.76	0.69	0.64			1.00	0.74				1.00		1.00	0.88	0.74
/ (s)	24	(610)	1.00		1.00	0.82					0.97	0.78	0.71	0.65				0.85						1.00	0.92	0.77
	26	(660)	1.00		1.00	0.85					1.00	0.80	0.73	0.66				0.96							0.95	0.80
Spacing	28	(711)	1.00			0.87						0.83	0.74	0.67				1.00							0.99	0.83
Sp	30	(762)	1.00			0.90						0.85	0.76	0.69											1.00	0.86
	36	(914)	1.00			0.98			İ			0.92	0.81	0.72											1.00	0.95
	> 48	(1219)	1.00			1.00						1.00	0.92	0.80												1.00

¹ Linear interpolation not permitted

 ² Shaded area with reduced edge distance is permitted provided the installation torque is reduced to 0.30 T_{max} for 5d ≤ s ≤ 16-in. and to 0.5 T_{max} for s > 16-in.
 3 When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

⁴ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$, f_{AN} , is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{AN} = f_{AN}$.

⁵ Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{HV} = 1.0$.

Table 48 - Load adjustment factors for 3/4-in. diameter threaded rods in uncracked concrete^{1,2,3}

	041																Edge	distar	nce in :	shear						
	3/4-ir		Sp	·	factor	in	Edg	e dista		ctor	Sp	acing		in		_			I		d awa	у			thickn	
	uncrack			tens	sion			in ter	nsion			she	ear⁴			Toward	d edge)		from	edge		†a	actor in	n shea	ره
	concre	te		f	AN			f_1	RN			f	AV			f	RV			f_{\parallel}	RV			f_{\parallel}	HV	
Emb	edment	in.	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15
	h _{ef}	(mm)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.35	0.24	0.18	0.10	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.17	0.07	0.05	0.02	n/a	n/a	n/a	n/a
	2-1/8	(54)	n/a	n/a	n/a	n/a	0.38	0.25	0.19	0.11	n/a	n/a	n/a	n/a	0.11	0.05	0.03	0.01	0.23	0.09	0.06	0.03	n/a	n/a	n/a	n/a
=	3-3/4	(95)	0.58	0.58	0.57	0.54	0.52	0.30	0.22	0.13	0.57	0.54	0.53	0.52	0.27	0.11	0.07	0.03	0.52	0.22	0.14	0.07	n/a	n/a	n/a	n/a
(mm)	4	(102)	0.59	0.59	0.57	0.54	0.54	0.31	0.23	0.13	0.57	0.54	0.53	0.52	0.29	0.12	0.08	0.04	0.54	0.24	0.16	0.07	n/a	n/a	n/a	n/a
ï.	5	(127)	0.61	0.61	0.59	0.56	0.60	0.34	0.25	0.14	0.59	0.55	0.54	0.52	0.41	0.17	0.11	0.05	0.60	0.33	0.22	0.10	n/a	n/a	n/a	n/a
	5-1/4	(133)	0.62	0.62	0.60	0.56	0.62	0.35	0.25	0.15	0.60	0.55	0.54	0.52	0.44	0.18	0.12	0.05	0.62	0.35	0.23	0.11	0.62	n/a	n/a	n/a
Ē,	6	(152)	0.63	0.63	0.61	0.57	0.66	0.38	0.27	0.16	0.61	0.56	0.55	0.53	0.54	0.22	0.14	0.07	0.66	0.38	0.27	0.13	0.66	n/a	n/a	n/a
Concrete thickness	7	(178)	0.66	0.66	0.63	0.58	0.72	0.41	0.30	0.17	0.63	0.57	0.55	0.53	0.68	0.28	0.18	0.08	0.72	0.41	0.30	0.17	0.72	n/a	n/a	n/a
X	8	(203)	0.68	0.68	0.65	0.59	0.79	0.45	0.32	0.19	0.65	0.58	0.56	0.54	0.83	0.34	0.22	0.10	0.79	0.45	0.32	0.19	0.77	n/a	n/a	n/a
Ę	8-1/2	(216)	0.69	0.69	0.66	0.59	0.82	0.47	0.34	0.20	0.66	0.59	0.56	0.54	0.91	0.37	0.24	0.11	0.82	0.47	0.34	0.20	0.79	0.59	n/a	n/a
ete	9	(229)	0.70	0.70	0.67	0.60	0.85	0.49	0.35	0.20	0.67	0.59	0.57	0.54	0.99	0.40	0.26	0.12	0.85	0.49	0.35	0.20	0.81	0.60	n/a	n/a
ü	10	(254)	0.72	0.72	0.69	0.61	0.92	0.53	0.38	0.22	0.68	0.60	0.58	0.55	1.00	0.47	0.31	0.14	0.92	0.53	0.38	0.22	0.86	0.64	n/a	n/a
ပိ	10-3/4	(273)	0.74	0.74	0.70	0.62	0.97	0.57	0.40	0.23	0.70	0.61	0.58	0.55		0.53	0.34	0.16	0.97	0.57	0.40	0.23	0.89	0.66	0.57	n/a
/ (້ ວ)	12	(305)	0.77	0.77	0.72	0.63	1.00	0.64	0.44	0.26	0.72	0.62	0.59	0.55		0.62	0.40	0.19	1.00	0.64	0.44	0.26	0.94	0.70	0.60	n/a
9	14	(356)	0.81	0.81	0.76	0.66		0.74	0.52	0.30	0.76	0.64	0.61	0.56		0.78	0.51	0.24		0.74	0.52	0.30	1.00	0.75	0.65	n/a
distance	16	(406)	0.86	0.86	0.80	0.68		0.85	0.59	0.34	0.79	0.66	0.62	0.57		0.96	0.62	0.29		0.85	0.59	0.34		0.80	0.70	n/a
lists	16-3/4	(425)	0.88	0.88	0.81	0.69		0.89	0.62	0.36	0.81	0.67	0.63	0.58		1.00	0.67	0.31		0.89	0.62	0.36		0.82	0.71	0.55
o e	18	(457)	0.90	0.90	0.83	0.70		0.96	0.66	0.39	0.83	0.68	0.64	0.58			0.74	0.35		0.96	0.66	0.39		0.85	0.74	0.57
Edge	20	(508)	0.95	0.95	0.87	0.72		1.00	0.74	0.43	0.87	0.70	0.65	0.59			0.87	0.40		1.00	0.74	0.43		0.90	0.78	0.60
(s)	22	(559)	0.99	0.99	0.91	0.74			0.81	0.47	0.91	0.72	0.67	0.60			1.00	0.47			0.81	0.47		0.94	0.82	0.63
g (s	24	(610)	1.00	1.00	0.94	0.77			0.89	0.51	0.94	0.74	0.68	0.61				0.53			0.89	0.51		0.99	0.85	0.66
Ğ.	26	(660)			0.98	0.79			0.96	0.56	0.98	0.76	0.70	0.62				0.60			0.96	0.56		1.00	0.89	0.69
Spacing	28	(711)			1.00	0.81			1.00	0.60	1.00	0.78	0.71	0.63				0.67			1.00	0.60			0.92	0.71
0)	30	(762)				0.83				0.64		0.80	0.73	0.64				0.74				0.64			0.95	0.74
	36	(914)				0.90				0.77		0.86	0.77	0.66				0.98				0.77			1.00	0.81
	> 48	(1219)				1.00				1.00		0.99	0.86	0.72				1.00				1.00			1.00	0.94

Table 49 - Load adjustment factors for 3/4-in. diameter threaded rods in cracked concrete^{1,2,3}

																	Edge	distar	nce in	shear						
	3/4-in		Sp	_	factor	in	Edg	e dista		ctor	Sp	acing		in			_		II	To an		У		ncrete		
	cracke	ed		tens	sion			in ter	nsion			she	ear4			Toward	d edge)		from	edge		fa	actor in	n shea	r ⁵
	concre	te		f_{i}	AN			$f_{\scriptscriptstyle \parallel}$	RN			f	AV			f_{\parallel}	RV			f_{\parallel}	RV			f_{\parallel}	HV	
Emb	edment	in.	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15	3-1/2	6-3/4	9	15
	h _{ef}	(mm)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)	(89)	(171)	(229)	(381)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.43	0.43	0.42	0.39	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.17	0.07	0.05	0.02	n/a	n/a	n/a	n/a
	2-1/8	(54)	n/a	n/a	n/a	n/a	0.45	0.45	0.43	0.40	n/a	n/a	n/a	n/a	0.11	0.05	0.03	0.02	0.23	0.09	0.06	0.03	n/a	n/a	n/a	n/a
_	3-3/4	(95)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.57	0.54	0.53	0.52	0.27	0.11	0.07	0.04	0.54	0.22	0.14	0.08	n/a	n/a	n/a	n/a
(mm)	4	(102)	0.59	0.59	0.57	0.54	0.55	0.55	0.51	0.44	0.57	0.54	0.53	0.52	0.30	0.12	0.08	0.04	0.55	0.24	0.16	0.08	n/a	n/a	n/a	n/a
	5	(127)	0.61	0.61	0.59	0.56	0.60	0.60	0.56	0.47	0.59	0.55	0.54	0.53	0.41	0.17	0.11	0.06	0.60	0.34	0.22	0.12	n/a	n/a	n/a	n/a
	5-1/4	(133)	0.62	0.62	0.60	0.56	0.62	0.62	0.57	0.47	0.60	0.55	0.54	0.53	0.45	0.18	0.12	0.06	0.62	0.36	0.24	0.13	0.62	n/a	n/a	n/a
E,	6	(152)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.61	0.56	0.55	0.53	0.54	0.22	0.14	0.08	0.66	0.44	0.29	0.15	0.67	n/a	n/a	n/a
Concrete thickness	7	(178)	0.66	0.66	0.63	0.58	0.72	0.72	0.65	0.52	0.63	0.57	0.55	0.54	0.69	0.28	0.18	0.10	0.72	0.56	0.36	0.19	0.72	n/a	n/a	n/a
羟	8	(203)	0.68	0.68	0.65	0.59	0.79	0.79	0.70	0.55	0.65	0.58	0.56	0.54	0.84	0.34	0.22	0.12	0.79	0.68	0.44	0.24	0.77	n/a	n/a	n/a
Ę	8-1/2	(216)	0.69	0.69	0.66	0.59	0.82	0.82	0.72	0.56	0.66	0.59	0.56	0.54	0.92	0.37	0.24	0.13	0.82	0.75	0.49	0.26	0.79	0.59	n/a	n/a
ete	9	(229)	0.70	0.70	0.67	0.60	0.85	0.85	0.75	0.57	0.67	0.59	0.57	0.55	1.00	0.41	0.26	0.14	0.85	0.82	0.53	0.28	0.82	0.61	n/a	n/a
ja Ja	10	(254)	0.72	0.72	0.69	0.61	0.92	0.92	0.80	0.60	0.69	0.60	0.58	0.55		0.48	0.31	0.17	0.92	0.92	0.62	0.33	0.86	0.64	n/a	n/a
ပိ	10-3/4	(273)	0.74	0.74	0.70	0.62	0.97	0.97	0.84	0.62	0.70	0.61	0.58	0.55		0.53	0.35	0.18	0.97	0.97	0.69	0.37	0.89	0.66	0.57	n/a
(c _s) /	12	(305)	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.72	0.62	0.59	0.56		0.63	0.41	0.22	1.00	1.00	0.82	0.44	0.94	0.70	0.61	n/a
	14	(356)	0.81	0.81	0.76	0.66			1.00	0.72	0.76	0.64	0.61	0.57		0.79	0.51	0.27		1.00	1.00	0.55	1.00	0.76	0.65	n/a
distance	16	(406)	0.86	0.86	0.80	0.68				0.78	0.80	0.66	0.62	0.58		0.97	0.63	0.34				0.67		0.81	0.70	n/a
dist	16-3/4	(425)	0.88	0.88	0.81	0.69				0.81	0.81	0.67	0.63	0.58	<u> </u>	1.00	0.67	0.36				0.72		0.83	0.72	0.58
g	18	(457)	0.90	0.90	0.83	0.70				0.85	0.83	0.68	0.64	0.59			0.75	0.40				0.80		0.86	0.74	0.60
Edge	20	(508)	0.95	0.95	0.87	0.72				0.91	0.87	0.70	0.65	0.60			0.88	0.47				0.91		0.90	0.78	0.63
/ (s)	22	(559)	0.99	0.99	0.91	0.74				0.98	0.91	0.72	0.67	0.61			1.00	0.54				0.98		0.95	0.82	0.67
	24	(610)	1.00	1.00	0.94	0.77				1.00	0.94	0.74	0.68	0.62				0.62				1.00		0.99	0.86	0.69
Spacing	26	(660)			0.98	0.79					0.98	0.76	0.70	0.63				0.69						1.00	0.89	0.72
Sp	28	(711)			1.00	0.81					1.00	0.79	0.71	0.64				0.78							0.92	0.75
	30	(762)				0.83						0.81	0.73	0.65				0.86							0.96	0.78
	36	(914)				0.90						0.87	0.77	0.68				1.00							1.00	0.85
	> 48	(1219)				1.00						0.99	0.87	0.74												0.98

¹ Linear interpolation not permitted

² Shaded area with reduced edge distance is permitted provided the installation torque is reduced to 0.30 T_{max} for 5d \leq s \leq 16-in. and to 0.5 T_{max} for s > 16-in.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

⁴ Spacing factor reduction in shear applicable when $c < 3^*h_{ef}$, f_{AV} is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$, then $f_{AV} = f_{AN}$. 5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$, then $f_{HV} = 1.0$.

Table 50 - Load adjustment factors for 7/8-in. diameter threaded rods in uncracked concrete 1.2.3

																	Edge	distar	nce in :	shear						
	7/8-ir		Sp	Ŭ	factor	r in	Edg	e dista		ctor	Sp	pacing		in		_			II		d awa	ıy		ncrete		
1	uncrack	red		tens	sion			in ter	nsion			she	ear4			Toward	d edge	;		from	edge		fa	actor in	n shea	r ⁵
	concre	te		f	AN			$f_{\scriptscriptstyle \parallel}$	RN			f	AV			f	RV			f	RV			f	HV	
Emb	edment	in.	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2	3-1/2	7-7/8	10-1/2	17-1/2
	h _{ef}	(mm)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.39	0.24	0.18	0.10	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.18	0.05	0.04	0.02	n/a	n/a	n/a	n/a
	2-1/4	(57)	n/a	n/a	n/a	n/a	0.43	0.25	0.19	0.11	n/a	n/a	n/a	n/a	0.13	0.04	0.03	0.01	0.26	0.08	0.05	0.02	n/a	n/a	n/a	n/a
_	4-3/8	(111)	0.58	0.58	0.57	0.54	0.54	0.31	0.23	0.13	0.58	0.54	0.53	0.52	0.35	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a
(mm)	5	(127)	0.60	0.60	0.58	0.55	0.56	0.33	0.24	0.13	0.59	0.54	0.53	0.52	0.43	0.13	0.09	0.04	0.56	0.27	0.17	0.08	n/a	n/a	n/a	n/a
ï.	5-1/2	(140)	0.61	0.61	0.59	0.55	0.59	0.34	0.25	0.14	0.60	0.55	0.54	0.52	0.50	0.15	0.10	0.05	0.59	0.31	0.20	0.09	0.65	n/a	n/a	n/a
'	6	(152)	0.62	0.62	0.60	0.56	0.61	0.36	0.26	0.15	0.61	0.55	0.54	0.52	0.57	0.17	0.11	0.05	0.61	0.35	0.23	0.11	0.68	n/a	n/a	n/a
Ξ	7	(178)	0.63	0.63	0.61	0.57	0.66	0.39	0.28	0.16	0.63	0.56	0.55	0.53	0.71	0.22	0.14	0.07	0.66	0.39	0.28	0.13	0.73	n/a	n/a	n/a
Concrete thickness	8	(203)	0.65	0.65	0.63	0.58	0.72	0.42	0.30	0.17	0.65	0.57	0.55	0.53	0.87	0.27	0.17	0.08	0.72	0.42	0.30	0.16	0.78	n/a	n/a	n/a
羟	9	(229)	0.67	0.67	0.64	0.59	0.77	0.45	0.33	0.18	0.67	0.58	0.56	0.54	1.00	0.32	0.21	0.10	0.77	0.45	0.33	0.18	0.83	n/a	n/a	n/a
ξ̈	9-7/8	(251)	0.69	0.69	0.66	0.59	0.82	0.48	0.35	0.19	0.69	0.59	0.56	0.54		0.37	0.24	0.11	0.82	0.48	0.35	0.19	0.87	0.59	n/a	n/a
ete	10	(254)	0.69	0.69	0.66	0.60	0.82	0.49	0.35	0.20	0.69	0.59	0.57	0.54		0.38	0.24	0.11	0.82	0.49	0.35	0.20	0.87	0.59	n/a	n/a
Ď	11	(279)	0.71	0.71	0.67	0.60	0.88	0.52	0.37	0.21	0.71	0.60	0.57	0.54		0.43	0.28	0.13	0.88	0.52	0.37	0.21	0.91	0.62	n/a	n/a
ဝိ	12	(305)	0.73	0.73	0.69	0.61	0.94	0.56	0.40	0.22	0.73	0.60	0.58	0.55		0.49	0.32	0.15	0.94	0.56	0.40	0.22	0.95	0.65	n/a	n/a
/ (້ຶ່ວ)	12-1/2	(318)	0.74	0.74	0.70	0.62	0.97	0.59	0.41	0.23	0.74	0.61	0.58	0.55		0.52	0.34	0.16	0.97	0.59	0.41	0.23	0.97	0.66	0.57	n/a
) (e	14	(356)	0.77	0.77	0.72	0.63	1.00	0.66	0.46	0.26	0.77	0.62	0.59	0.55		0.62	0.40	0.19	1.00	0.66	0.46	0.26	1.00	0.70	0.60	n/a
distance	16	(406)	0.81	0.81	0.75	0.65		0.75	0.52	0.29	0.80	0.64	0.60	0.56		0.76	0.49	0.23	1.00	0.75	0.52	0.29		0.75	0.65	n/a
ist	18	(457)	0.85	0.85	0.79	0.67		0.84	0.59	0.33	0.84	0.66	0.62	0.57		0.91	0.59	0.27	1.00	0.84	0.59	0.33		0.79	0.68	n/a
g	19-1/2	(495)	0.88	0.88	0.81	0.69		0.92	0.64	0.36	0.87	0.67	0.63	0.58		1.00	0.66	0.31	1.00	0.92	0.64	0.36		0.82	0.71	0.55
Edge	20	(508)	0.89	0.89	0.82	0.69		0.94	0.65	0.37	0.88	0.67	0.63	0.58			0.69	0.32	1.00	0.94	0.65	0.37		0.83	0.72	0.56
/(s)	22	(559)	0.92	0.92	0.85	0.71		1.00	0.72	0.40	0.92	0.69	0.64	0.59			0.80	0.37		1.00	0.72	0.40		0.87	0.76	0.59
g g	24	(610)	0.96	0.96	0.88	0.73			0.78	0.44	0.96	0.71	0.66	0.59			0.91	0.42			0.78	0.44		0.91	0.79	0.61
Spacing	26	(660)	1.00	1.00	0.91	0.75			0.85	0.48	0.99	0.73	0.67	0.60			1.00	0.48			0.85	0.48		0.95	0.82	0.64
Sp	28	(711)			0.94	0.77			0.91	0.51	1.00	0.74	0.68	0.61				0.53			0.91	0.51		0.99	0.85	0.66
	30	(762)			0.98	0.79			0.98	0.55		0.76	0.70	0.62				0.59			0.98	0.55		1.00	0.88	0.68
	36	(914)			1.00	0.84			1.00	0.66		0.81	0.73	0.64				0.77			1.00	0.66			0.97	0.75
	> 48	(1219)				0.96				0.88		0.92	0.81	0.69				1.00				0.88			1.00	0.87

Table 51 - Load adjustment factors for 7/8-in. diameter threaded rods in cracked concrete 1.2.3

	7/8-in. Spacing factor														Edge	distar	ice in	shear								
	7/8-ir	١.	Sp	acing	factor	in	Edg	e dista	ınce fa	ctor	Sp	acing	factor	in			L		II	To an	d awa	у	Cor	ncrete	thickn	ess
	cracke	ed		ten	sion		Ū	in ter	nsion			she			-	Toward	d edge)		from	edae		fa	actor in	n sheai	5
	concre	ete		f				f				f				_	RV			f	U			f		
Foods		in.	3-1/2		10-1/2	17-1/2	3_1/2		10-1/2	17-1/2	3-1/2			17-1/2	3-1/2			17-1/2	3-1/2			17-1/2	3-1/2		10-1/2	17-1/2
	edment h _{ef}	(mm)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)	(89)	(200)	(267)	(445)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.42	0.42	0.41	0.38	n/a	n/a	n/a	n/a	0.09	0.03	0.02	0.01	0.18	0.06	0.04	0.02	n/a	n/a	n/a	n/a
	2-1/4	(57)	n/a	n/a	n/a	n/a	0.44	0.44	0.42	0.39	n/a	n/a	n/a	n/a	0.13	0.04	0.03	0.01	0.26	0.08	0.05	0.03	n/a	n/a	n/a	n/a
	4-3/8	(111)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.58	0.54	0.53	0.52	0.36	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a
(mm)	5	(127)	0.60	0.60	0.58	0.55	0.56	0.56	0.52	0.45	0.60	0.54	0.53	0.52	0.43	0.13	0.09	0.04	0.56	0.27	0.17	0.08	n/a	n/a	n/a	n/a
٤	5-1/2	(140)	0.61	0.61	0.59	0.55	0.59	0.59	0.54	0.46	0.61	0.55	0.54	0.52	0.50	0.15	0.10	0.05	0.59	0.31	0.20	0.10	0.65	n/a	n/a	n/a
.⊑	6	(152)	0.62	0.62	0.60	0.56	0.61	0.61	0.56	0.47	0.61	0.55	0.54	0.52	0.57	0.18	0.11	0.06	0.61	0.35	0.23	0.11	0.68	n/a	n/a	n/a
Ξ,	7	(178)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.63	0.56	0.55	0.53	0.72	0.22	0.14	0.07	0.66	0.44	0.29	0.14	0.73	n/a	n/a	n/a
SSS	8	(203)	0.65	0.65	0.63	0.58	0.72	0.72	0.64	0.52	0.65	0.57	0.55	0.53	0.88	0.27	0.18	0.09	0.72	0.54	0.35	0.17	0.78	n/a	n/a	n/a
thickness	9	(229)	0.67	0.67	0.64	0.59	0.77	0.77	0.68	0.54	0.67	0.58	0.56	0.54	1.00	0.32	0.21	0.10	0.77	0.65	0.42	0.20	0.83	n/a	n/a	n/a
thic	9-7/8	(251)	0.69	0.69	0.66	0.59	0.82	0.82	0.72	0.56	0.69	0.59	0.56	0.54		0.37	0.24	0.12	0.82	0.74	0.48	0.23	0.87	0.59	n/a	n/a
ete	10	(254)	0.69	0.69	0.66	0.60	0.82	0.82	0.73	0.56	0.69	0.59	0.57	0.54		0.38	0.25	0.12	0.82	0.76	0.49	0.24	0.87	0.59	n/a	n/a
Concrete	11	(279)	0.71	0.71	0.67	0.60	0.88	0.88	0.77	0.59	0.71	0.60	0.57	0.54		0.44	0.28	0.14	0.88	0.87	0.57	0.28	0.92	0.62	n/a	n/a
ပိ	12	(305)	0.73	0.73	0.69	0.61	0.94	0.94	0.82	0.61	0.73	0.60	0.58	0.55		0.50	0.32	0.16	0.94	0.94	0.65	0.31	0.96	0.65	n/a	n/a
<u>_</u>	12-1/2	(318)	0.74	0.74	0.70	0.62	0.97	0.97	0.84	0.62	0.74	0.61	0.58	0.55		0.53	0.34	0.17	0.97	0.97	0.69	0.33	0.98	0.66	0.57	n/a
distance (cූ)	14	(356)	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.77	0.62	0.59	0.56		0.63	0.41	0.20	1.00	1.00	0.82	0.40	1.00	0.70	0.61	n/a
anc	16	(406)	0.81	0.81	0.75	0.65			1.00	0.71	0.81	0.64	0.60	0.56		0.77	0.50	0.24			1.00	0.48		0.75	0.65	n/a
dist	18	(457)	0.85	0.85	0.79	0.67				0.76	0.84	0.66	0.62	0.57		0.91	0.59	0.29				0.58		0.79	0.69	n/a
	19-1/2	(495)	0.88	0.88	0.81	0.69				0.80	0.87	0.67	0.63	0.58		1.00	0.67	0.32				0.65		0.82	0.71	0.56
Edge	20	(508)	0.89	0.89	0.82	0.69				0.82	0.88	0.67	0.63	0.58			0.70	0.34				0.67		0.84	0.72	0.57
/ (s)	22	(559)	0.92	0.92	0.85	0.71				0.87	0.92	0.69	0.64	0.59			0.80	0.39				0.78		0.88	0.76	0.60
) gc	24	(610)	0.96	0.96	0.88	0.73				0.93	0.96	0.71	0.66	0.60			0.91	0.44				0.89		0.92	0.79	0.62
Spacing	26	(660)	1.00	1.00	0.91	0.75				0.99	1.00	0.73	0.67	0.61			1.00	0.50				0.99		0.95	0.82	0.65
Sp	28	(711)			0.94	0.77				1.00	ļ	0.74	0.68	0.61				0.56				1.00		0.99	0.86	0.67
	30	(762)	├		0.98	0.79					<u> </u>	0.76	0.70	0.62				0.62						1.00	0.89	0.70
	36	(914)			1.00	0.84					<u> </u>	0.81	0.74	0.65				0.81							0.97	0.76
	> 48	(1219)	<u> </u>			0.96						0.92	0.81	0.69				1.00							1.00	0.88

¹ Linear interpolation not permitted

² Shaded area with reduced edge distance is permitted provided the installation torque is reduced to 0.30 T_{max} for 5d ≤ s ≤ 16-in. and to 0.5 T_{max} for s > 16-in.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

⁴ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$, f_{AN} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{AV} = f_{AN}$.

⁵ Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{\text{ef}}$, then $f_{\text{HV}} = 1.0$.

Table 52 - Load adjustment factors for 1-in. diameter threaded rods in uncracked concrete^{1,2,3}

	1-in. Spacing facto																Edge	distar	nce in :	shear						
	1-in.		Sr	acing	factor	in	Edg	e dista	ince fa	ctor	Sr	acing	factor	in			L		II	To an	d awa	.V	Cor	ncrete	thickn	ess
ı	uncrack	ed		tens				in ter	nsion		· ·	·	ear4		-	Toward		,		from	edge	•	fa	actor in	n sheai	r ⁵
	concre	te		f	A N.I.			f	DN			f	AV			f	DI.			f_{\parallel}	DV.			f.	HV	
Emb	edment	in.	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20
	h _{of}	(mm)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.38	0.24	0.18	0.10	n/a	n/a	n/a	n/a	0.08	0.02	0.01	0.01	0.15	0.05	0.03	0.01	n/a	n/a	n/a	n/a
	2-3/4	(70)	n/a	n/a	n/a	n/a	0.45	0.26	0.19	0.11	n/a	n/a	n/a	n/a	0.15	0.04	0.03	0.01	0.30	0.09	0.06	0.03	n/a	n/a	n/a	n/a
	5	(127)	0.58	0.58	0.57	0.54	0.54	0.32	0.23	0.13	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a
in. (mm)	6	(152)	0.60	0.60	0.58	0.55	0.58	0.34	0.25	0.14	0.60	0.55	0.53	0.52	0.48	0.14	0.09	0.04	0.58	0.29	0.19	0.09	n/a	n/a	n/a	n/a
<u>۔</u> ڪ	6-1/4	(159)	0.61	0.61	0.59	0.55	0.59	0.35	0.25	0.14	0.61	0.55	0.54	0.52	0.51	0.15	0.10	0.05	0.59	0.30	0.20	0.09	0.65	n/a	n/a	n/a
	7	(178)	0.62	0.62	0.60	0.56	0.62	0.37	0.27	0.15	0.62	0.55	0.54	0.52	0.61	0.18	0.12	0.05	0.62	0.36	0.23	0.11	0.69	n/a	n/a	n/a
Ē,	8	(203)	0.63	0.63	0.61	0.57	0.66	0.40	0.29	0.16	0.64	0.56	0.55	0.53	0.74	0.22	0.14	0.07	0.66	0.40	0.29	0.13	0.74	n/a	n/a	n/a
Concrete thickness	9	(229)	0.65	0.65	0.63	0.58	0.71	0.43	0.31	0.17	0.65	0.57	0.55	0.53	0.89	0.26	0.17	0.08	0.71	0.43	0.31	0.16	0.78	n/a	n/a	n/a
š	10	(254)	0.67	0.67	0.64	0.58	0.76	0.46	0.33	0.18	0.67	0.58	0.56	0.53	1.00	0.31	0.20	0.09	0.76	0.46	0.33	0.18	0.83	n/a	n/a	n/a
Ę	11	(279)	0.69	0.69	0.65	0.59	0.80	0.49	0.35	0.19	0.69	0.58	0.56	0.54		0.35	0.23	0.11	0.80	0.49	0.35	0.19	0.87	n/a	n/a	n/a
ete	11-1/4	(286)	0.69	0.69	0.66	0.59	0.82	0.50	0.35	0.19	0.69	0.59	0.56	0.54		0.37	0.24	0.11	0.82	0.50	0.35	0.19	0.88	0.58	n/a	n/a
ncr	12	(305)	0.70	0.70	0.67	0.60	0.85	0.52	0.37	0.20	0.70	0.59	0.57	0.54		0.40	0.26	0.12	0.85	0.52	0.37	0.20	0.91	0.60	n/a	n/a
ဝိ	13	(330)	0.72	0.72	0.68	0.61	0.90	0.55	0.39	0.22	0.72	0.60	0.57	0.54		0.46	0.30	0.14	0.90	0.55	0.39	0.22	0.94	0.63	n/a	n/a
	14	(356)	0.74	0.74	0.69	0.62	0.96	0.59	0.41	0.23	0.74	0.61	0.58	0.55		0.51	0.33	0.15	0.96	0.59	0.41	0.23	0.98	0.65	n/a	n/a
distance (دٍ)	14-1/4	(362)	0.74	0.74	0.70	0.62	0.97	0.60	0.42	0.23	0.74	0.61	0.58	0.55		0.52	0.34	0.16	0.97	0.60	0.42	0.23	0.99	0.66	0.57	n/a
anc	16	(406)	0.77	0.77	0.72	0.63	1.00	0.67	0.47	0.26	0.77	0.62	0.59	0.55		0.62	0.40	0.19	1.00	0.67	0.47	0.26	1.00	0.70	0.60	n/a
dist	18	(457)	0.80	0.80	0.75	0.65		0.76	0.53	0.29	0.81	0.64	0.60	0.56		0.74	0.48	0.22		0.76	0.53	0.29		0.74	0.64	n/a
Edge	20	(508)	0.84	0.84	0.78	0.67		0.84	0.58	0.32	0.84	0.65	0.61	0.57		0.87	0.56	0.26		0.84	0.58	0.32		0.78	0.67	n/a
B	22	(559)	0.87	0.87	0.81	0.68		0.93	0.64	0.35	0.88	0.67	0.63	0.58		1.00	0.65	0.30		0.93	0.64	0.35		0.82	0.71	n/a
(s	22-1/4	(565)	0.87	0.87	0.81	0.69		0.94	0.65	0.36	0.88	0.67	0.63	0.58			0.66	0.31		0.94	0.65	0.36		0.82	0.71	0.55
) g(24	(610)	0.90	0.90	0.83	0.70		1.00	0.70	0.39	0.91	0.68	0.64	0.58			0.74	0.35		1.00	0.70	0.39		0.85	0.74	0.57
Spacing (s)	26	(660)	0.94	0.94	0.86	0.72			0.76	0.42	0.94	0.70	0.65	0.59			0.84	0.39			0.76	0.42		0.89	0.77	0.60
Sp	28	(711)	0.97	0.97	0.89	0.73			0.82	0.45	0.98	0.71	0.66	0.60			0.94	0.43			0.82	0.45		0.92	0.80	0.62
	30	(762)	1.00	1.00	0.92	0.75			0.88	0.48	1.00	0.73	0.67	0.60			1.00	0.48			0.88	0.48	ļ	0.95	0.83	0.64
	36	(914)	ļ		1.00	0.80			1.00	0.58		0.77	0.70	0.62				0.63			1.00	0.58		1.00	0.91	0.70
	> 48	(1219)				0.90				0.77		0.86	0.77	0.66				0.98				0.77			1.00	0.81

Table 53 - Load adjustment factors for 1-in. diameter threaded rods in cracked concrete^{1,2,3}

					tillei			101								orac										
																	Edge	distar	nce in	shear						
	1-in.		Sr	acing	factor	in	Edg	e dista	ince fa	actor	l sr	acing	factor	in			L		П	To an	d awa	ıy	Cor	ncrete	thickn	iess
	cracke	ed	·	Ŭ	sion			in ter				she				Toward	– d edge)		from	edae		fa	actor i	n shea	r ⁵
	concre	te		f				f	RN			f				,	RV			f	Ŭ			f	HV	
		in.	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20	4	9	12	20
Emt	edment h _{ef}	(mm)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)	(102)	(229)	(305)	(508)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.41	0.41	0.40	0.38	n/a	n/a	n/a	n/a	0.08	0.02	0.01	0.01	0.15	0.05	0.03	0.01	n/a	n/a	n/a	n/a
	2-3/4	(70)	n/a	n/a	n/a	n/a	0.45	0.45	0.43	0.40	n/a	n/a	n/a	n/a	0.15	0.04	0.03	0.01	0.30	0.09	0.06	0.03	n/a	n/a	n/a	n/a
	5	(127)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a
(mm)	6	(152)	0.60	0.60	0.58	0.55	0.58	0.58	0.53	0.46	0.60	0.55	0.53	0.52	0.49	0.14	0.09	0.04	0.58	0.29	0.19	0.09	n/a	n/a	n/a	n/a
	6-1/4	(159)	0.61	0.61	0.59	0.55	0.59	0.59	0.54	0.46	0.61	0.55	0.54	0.52	0.52	0.15	0.10	0.05	0.59	0.31	0.20	0.09	0.66	n/a	n/a	n/a
.⊑	7	(178)	0.62	0.62	0.60	0.56	0.62	0.62	0.57	0.47	0.62	0.55	0.54	0.52	0.61	0.18	0.12	0.05	0.62	0.36	0.24	0.11	0.69	n/a	n/a	n/a
Ē,	8	(203)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.64	0.56	0.55	0.53	0.75	0.22	0.14	0.07	0.66	0.44	0.29	0.13	0.74	n/a	n/a	n/a
thickness	9	(229)	0.65	0.65	0.63	0.58	0.71	0.71	0.64	0.51	0.65	0.57	0.55	0.53	0.89	0.26	0.17	0.08	0.71	0.53	0.34	0.16	0.79	n/a	n/a	n/a
ž	10	(254)	0.67	0.67	0.64	0.58	0.76	0.76	0.67	0.53	0.67	0.58	0.56	0.53	1.00	0.31	0.20	0.09	0.76	0.62	0.40	0.19	0.83	n/a	n/a	n/a
	11	(279)	0.69	0.69	0.65	0.59	0.80	0.80	0.71	0.55	0.69	0.58	0.56	0.54		0.36	0.23	0.11	0.80	0.72	0.46	0.22	0.87	n/a	n/a	n/a
Concrete	11-1/4	(286)	0.69	0.69	0.66	0.59	0.82	0.82	0.72	0.56	0.69	0.59	0.56	0.54		0.37	0.24	0.11	0.82	0.74	0.48	0.22	0.88	0.59	n/a	n/a
DC I	12	(305)	0.70	0.70	0.67	0.60	0.85	0.85	0.75	0.57	0.71	0.59	0.57	0.54		0.41	0.26	0.12	0.85	0.82	0.53	0.25	0.91	0.61	n/a	n/a
ပို	13	(330)	0.72	0.72	0.68	0.61	0.90	0.90	0.79	0.59	0.72	0.60	0.57	0.54		0.46	0.30	0.14	0.90	0.90	0.60	0.28	0.95	0.63	n/a	n/a
(်ီ)	14	(356)	0.74	0.74	0.69	0.62	0.96	0.96	0.83	0.62	0.74	0.61	0.58	0.55		0.51	0.33	0.16	0.96	0.96	0.67	0.31	0.98	0.65	n/a	n/a
90	14-1/4	(362)	0.74	0.74	0.70	0.62	0.97	0.97	0.84	0.62	0.74	0.61	0.58	0.55		0.53	0.34	0.16	0.97	0.97	0.69	0.32	0.99	0.66	0.57	n/a
distance	16	(406)	0.77	0.77	0.72	0.63	1.00	1.00	0.91	0.66	0.77	0.62	0.59	0.55		0.63	0.41	0.19	1.00	1.00	0.82	0.38	1.00	0.70	0.61	n/a
dis	18	(457)	0.80	0.80	0.75	0.65			1.00	0.70	0.81	0.64	0.60	0.56		0.75	0.49	0.23			0.97	0.45		0.74	0.64	n/a
Edge	20	(508) (559)	0.84	0.84	0.78	0.67				0.75	0.84	0.65	0.63	0.57		1.00	0.57	0.26			1.00	0.53		0.78	0.68	n/a n/a
Ĕ	22-1/4	(565)	0.87	0.87	0.81	0.69				0.80	0.88	0.67	0.63	0.58		1.00	0.67	0.31				0.62		0.82	0.71	0.55
(8)	24	(610)	0.90	0.90	0.83	0.70				0.85	0.00	0.68	0.64	0.58			0.75	0.35				0.70		0.86	0.74	0.57
Spacing (s)	26	(660)	0.94	0.94	0.86	0.70				0.90	0.95	0.70	0.65	0.59			0.73	0.39				0.78		0.89	0.74	0.60
bac	28	(711)	0.97	0.97	0.89	0.72				0.95	0.98	0.71	0.66	0.60			0.94	0.44				0.78		0.92	0.80	0.62
S	30	(762)	1.00	1.00	0.92	0.75				1.00	1.00	0.73	0.67	0.60			1.00	0.49				0.97		0.96	0.83	0.64
	36	(914)			1.00	0.80					Ė	0.77	0.71	0.62			Ė	0.64				1.00		1.00	0.91	0.70
	> 48	(1219)				0.90						0.87	0.77	0.66				0.98							1.00	0.81

² Shaded area with reduced edge distance is permitted provided the installation torque is reduced to $0.30\,T_{max}$ for $5d \le s \le 16$ -in. and to $0.5\,T_{max}$ for s > 16-in.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

4 Spacing factor reduction in shear applicable when $c < 3*h_{ef}$. f_{AV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{AV} = f_{AN}$.

5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{HV} = 1.0$.

Table 54 - Load adjustment factors for 1-1/4-in. diameter threaded rods in uncracked concrete^{1,2,3}

																	Edge	distar	nce in	shear						
	1-1/4- uncracl		Sp	acing tens		in	Edg	e dista in ter		ctor	Sp	acing she		in		Toward	⊥ d edge)	II	To an		У		ncrete actor ir		
	concre	ete		f,	AN			f_1	RN			f	AV			f	RV			f	RV			f_{\parallel}	HV	
Emb	edment	in.	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	11-1/4	25
	h _{ef}	(mm)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(286)	(635)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.37	0.24	0.18	0.10	n/a	n/a	n/a	n/a	0.05	0.02	0.01	0.00	0.11	0.03	0.02	0.01	n/a	n/a	n/a	n/a
<u> </u>	3-1/8	(79)	n/a	n/a	n/a	n/a	0.44	0.27	0.20	0.11	n/a	n/a	n/a	n/a	0.13	0.04	0.02	0.01	0.26	0.08	0.05	0.02	n/a	n/a	n/a	n/a
(mm)	6-1/4	(159)	0.58	0.58	0.57	0.54	0.54	0.33	0.24	0.13	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a
<u>:</u>	7	(178)	0.59	0.59	0.58	0.55	0.56	0.35	0.25	0.13	0.60	0.54	0.53	0.52	0.43	0.13	0.08	0.04	0.56	0.26	0.17	0.08	n/a	n/a	n/a	n/a
'.	8	(203)	0.61	0.61	0.59	0.55	0.59	0.37	0.27	0.14	0.61	0.55	0.54	0.52	0.53	0.16	0.10	0.05	0.59	0.31	0.20	0.10	0.66	n/a	n/a	n/a
(L)	9	(229)	0.62	0.62	0.60	0.56	0.63	0.39	0.28	0.15	0.62	0.55	0.54	0.52	0.63	0.19	0.12	0.06	0.63	0.38	0.24	0.11	0.70	n/a	n/a	n/a_
thickness	10	(254)	0.63	0.63	0.61	0.57	0.66	0.41	0.30	0.16	0.64	0.56	0.55	0.53	0.74	0.22	0.14	0.07	0.66	0.41	0.29	0.13	0.74	n/a	n/a	n/a
홄	11	(279)	0.65	0.65	0.62	0.57	0.70	0.44	0.32	0.17	0.65	0.57	0.55	0.53	0.86	0.25	0.16	0.08	0.70	0.44	0.32	0.15	0.78	n/a	n/a	n/a
₽	12	(305)	0.66	0.66	0.63	0.58	0.74	0.46	0.33	0.18	0.66	0.57	0.55	0.53	0.98	0.29	0.19	0.09	0.74	0.46	0.33	0.17	0.81	n/a	n/a	n/a
Concrete	13	(330)	0.68	0.68	0.64	0.59	0.77	0.49	0.35	0.19	0.68	0.58	0.56	0.54	1.00	0.33	0.21	0.10	0.77	0.49	0.35	0.19	0.84	n/a 0.58	n/a	n/a
ö	14 14-1/4	(362)	0.69	0.69	0.66	0.59	0.81	0.52	0.37	0.20	0.69	0.59	0.56	0.54		0.36	0.24	0.11	0.81	0.52	0.37	0.20	0.87	0.58	n/a	n/a
_	15	(381)	0.69	0.69	0.66	0.60	0.85	0.52	0.37	0.20	0.69	0.59	0.56	0.54		0.37	0.24	0.11	0.85	0.52	0.37	0.20	0.00	0.60	n/a n/a	n/a
(c _g	16	(406)	0.70	0.70	0.67	0.60	0.89	0.54	0.39	0.20	0.70	0.60	0.57	0.54		0.40	0.29	0.12	0.89	0.54	0.39	0.20	0.91	0.60	n/a	n/a n/a
	17	(432)	0.72	0.72	0.69	0.61	0.09	0.60	0.40	0.21	0.72	0.60	0.57	0.55		0.49	0.29	0.15	0.89	0.60	0.40	0.21	0.94	0.64	n/a	n/a
distance	18	(457)	0.74	0.73	0.70	0.62	0.98	0.63	0.42	0.23	0.75	0.61	0.58	0.55		0.43	0.35	0.16	0.98	0.63	0.42	0.23	0.99	0.66	0.57	n/a
ğ	20	(508)	0.77	0.77	0.72	0.63	1.00	0.70	0.49	0.26	0.77	0.62	0.59	0.55		0.62	0.40	0.19	1.00	0.70	0.49	0.26	1.00	0.70	0.60	n/a
Edge	22	(559)	0.80	0.80	0.74	0.65	1.00	0.77	0.54	0.28	0.80	0.63	0.60	0.56		0.72	0.47	0.13	1.00	0.77	0.54	0.28	1.00	0.73	0.63	n/a
_	24	(610)	0.82	0.82	0.77	0.66		0.84	0.59	0.31	0.83	0.65	0.61	0.57		0.82	0.53	0.25		0.84	0.59	0.31		0.76	0.66	n/a
(8)	26	(660)	0.85	0.85	0.79	0.67		0.91	0.64	0.34	0.86	0.66	0.62	0.57		0.92	0.60	0.28		0.91	0.64	0.34		0.79	0.69	n/a
Spacing	28	(711)	0.88	0.88	0.81	0.69		0.98	0.68	0.36	0.88	0.67	0.63	0.58		1.00	0.67	0.31		0.98	0.68	0.36		0.82	0.71	0.55
bac	30	(762)	0.90	0.90	0.83	0.70		1.00	0.73	0.39	0.91	0.68	0.64	0.58		1	0.74	0.35		1.00	0.73	0.39		0.85	0.74	0.57
Ø	36	(914)	0.99	0.99	0.90	0.74			0.88	0.47	0.99	0.72	0.66	0.60			0.98	0.45			0.88	0.47		0.94	0.81	0.63
	> 48	(1219)	1.00	1.00	1.00	0.82			1.00	0.62	1.00	0.79	0.72	0.63			1.00	0.70			1.00	0.62		1.00	0.94	0.72

Table 55 - Load adjustment factors for 1-1/4-in. diameter threaded rods in cracked concrete^{1,2,3}

	1-1/4-in. Spacing factor															Edge	distar	nce in	shear							
	1-1/4-		Sp	Ŭ		in	Edg	e dista		ctor	Sp	pacing		in		_	_		II	To an		у			thickn	
	crack	ed		tens	sion			in ter	nsion			she	ear4			Toward	d edge	•		from	edge		fa	actor in	n shea	r ⁵
	concre	ete		f_{j}	AN			$f_{\scriptscriptstyle 1}$	RN			f	AV			f	RV			$f_{\scriptscriptstyle \parallel}$	RV			f	HV	
Emb	edment	in.	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	15	25	5	11-1/4	11-1/4	25
	h _{ef}	(mm)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(381)	(635)	(127)	(286)	(286)	(635)
	1-3/4	(44)	n/a	n/a	n/a	n/a	0.40	0.40	0.39	0.37	n/a	n/a	n/a	n/a	0.05	0.02	0.01	0.00	0.11	0.03	0.02	0.01	n/a	n/a	n/a	n/a
=	3-1/8	(79)	n/a	n/a	n/a	n/a	0.44	0.44	0.42	0.39	n/a	n/a	n/a	n/a	0.13	0.04	0.03	0.01	0.26	0.08	0.05	0.02	n/a	n/a	n/a	n/a
(mm)	6-1/4	(159)	0.58	0.58	0.57	0.54	0.54	0.54	0.50	0.44	0.59	0.54	0.53	0.52	0.37	0.11	0.07	0.03	0.54	0.22	0.14	0.07	n/a	n/a	n/a	n/a
.⊑	7	(178)	0.59	0.59	0.58	0.55	0.56	0.56	0.52	0.45	0.60	0.54	0.53	0.52	0.44	0.13	0.08	0.04	0.56	0.26	0.17	0.08	n/a	n/a	n/a	n/a
	8	(203)	0.61	0.61	0.59	0.55	0.59	0.59	0.55	0.46	0.61	0.55	0.54	0.52	0.54	0.16	0.10	0.05	0.59	0.32	0.21	0.10	0.66	n/a	n/a	n/a
, (h),	9	(229)	0.62	0.62	0.60	0.56	0.63	0.63	0.57	0.48	0.62	0.55	0.54	0.52	0.64	0.19	0.12	0.06	0.63	0.38	0.25	0.11	0.70	n/a	n/a	n/a
thickness	10	(254)	0.63	0.63	0.61	0.57	0.66	0.66	0.60	0.49	0.64	0.56	0.55	0.53	0.75	0.22	0.14	0.07	0.66	0.44	0.29	0.13	0.74	n/a	n/a	n/a_
꿁	11	(279)	0.65	0.65	0.62	0.57	0.70	0.70	0.63	0.51	0.65	0.57	0.55	0.53	0.86	0.26	0.17	0.08	0.70	0.51	0.33	0.15	0.78	n/a	n/a	n/a
Ŧ	12	(305)	0.66	0.66	0.63	0.58	0.74	0.74	0.66	0.53	0.66	0.57	0.55	0.53	0.98	0.29	0.19	0.09	0.74	0.58	0.38	0.18	0.81	n/a	n/a	n/a
Concrete	13	(330)	0.68	0.68	0.64	0.59	0.77	0.77	0.69	0.54	0.68	0.58	0.56	0.54	1.00	0.33	0.21	0.10	0.77	0.66	0.43	0.20	0.85	n/a	n/a	n/a
Suc	14	(356)	0.69	0.69	0.66	0.59	0.81	0.81	0.72	0.56	0.69	0.59	0.56	0.54		0.37	0.24	0.11	0.81	0.73	0.48	0.22	0.88	0.58	n/a	n/a
ŏ	14-1/4	(362)	0.69	0.69	0.66	0.60	0.82	0.82	0.73	0.56	0.70	0.59	0.57	0.54		0.38	0.25	0.11	0.82	0.75	0.49	0.23	0.89	0.59	n/a	n/a
ြိ	15	(381)	0.70	0.70	0.67	0.60	0.85	0.85	0.75	0.57	0.71	0.59	0.57	0.54		0.41	0.26	0.12	0.85	0.82	0.53	0.25	0.91	0.61	n/a	n/a
ee Ge	16	(406)	0.72	0.72	0.68	0.61	0.89	0.89	0.78	0.59	0.72	0.60	0.57	0.54		0.45	0.29	0.14	0.89	0.89	0.58	0.27	0.94	0.63	n/a	n/a
distance (c_)	17	(432)	0.73	0.73	0.69	0.61	0.93	0.93	0.81	0.61	0.73	0.60	0.58	0.55		0.49	0.32	0.15	0.93	0.93	0.64	0.30	0.97	0.64	n/a	n/a
dis	18 20	(457) (508)	0.74	0.74	0.70	0.62	0.98 1.00	0.98	0.85	0.62	0.75	0.61	0.58	0.55		0.54	0.35	0.16	0.98 1.00	0.98	0.70	0.32	0.99 1.00	0.66	0.57	n/a
Edge	_		0.77	_	_	0.65	1.00	1.00			0.77			0.56		0.63		0.19	1.00	1.00	_	0.36	1.00	-		n/a
Ä	22	(559) (610)	0.80	0.80	0.74	0.65			1.00	0.69	0.80	0.63	0.60	0.56		0.72	0.47	0.22			1.00	0.44		0.73	0.63	n/a
(8)	26	(660)	0.82	0.82	0.77	0.66			1.00	0.73	0.83	0.65	0.61	0.57		0.82	0.60	0.25			1.00	0.50	<u> </u>	0.77	0.66	n/a
Spacing	28		0.88	0.88	0.79	0.67				0.77	0.88	0.67	0.62	0.57	-	1.00	0.60	0.26				0.63	 	0.83	0.69	n/a 0.55
bac	30	(711) (762)	0.88	0.88	0.81	0.69				0.81	0.88	0.67	0.63	0.58	l	1.00	0.68	0.31				0.63	<u> </u>	0.83	0.72	0.55
Ŋ.	36	(914)	0.90	0.90	0.63	0.70				0.65	0.91	0.66	0.64	0.60			0.75	0.35				0.70	 	0.00	0.74	0.63
	> 48	(1219)	1.00	1.00	1.00	0.74				1.00	1.00	0.72	0.66	0.60	 		1.00	0.46				1.00	\vdash	1.00	0.61	0.63

¹ Linear interpolation not permitted

Shaded area with reduced edge distance is permitted provided the installation torque is reduced to $0.30\,T_{max}$ for $5d \le s \le 16$ -in. and to $0.5\,T_{max}$ for s > 16-in. When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative.

To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

Spacing factor reduction in shear applicable when $c < 3^*h_{ef}$. f_{AN^*} is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$ then $f_{AN} = f_{AN^*}$. Concrete thickness reduction factor in shear, f_{HN^*} is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$, then $f_{HN} = 1.0$.

HIT-HY 200 with HIS-N Inserts

Figure 12 - Hilti HIS-N and HIS-RN internally threaded insert installation conditions

Table 56 - Hilti HIS-N and HIS-RN specifications

Cotting information	Cumbal	Units		Threa	d size	\sim
Setting information	Symbol	Units	3/8-16 UNC	1/2-13 UNC	5/8-11 UNC	3/4-10 UNC
Outside diameter of insert		in.	0.65	0.81	1.00	1.09
Nominal bit diameter	d	in.	11/16	7/8	1-1/8	1-1/4
Effective embedment	h	in.	4-3/8	5	6-3/4	8-1/8
Effective embeament	h _{ef}	(mm)	(110)	(125)	(170)	(205)
Thread angagement minimum	h	in.	3/8	1/2	5/8	3/4
Thread engagement maximum	$h_{_{s}}$	in.	15/16	1-3/16	1-1/2	1-7/8
Installation towns	_	ft-lb	15	30	60	100
Installation torque	T _{inst}	(Nm)	(20)	(40)	(81)	(136)
Minimum concrete thickness	h	in.	5.9	6.7	9.1	10.6
Minimum concrete thickness	h _{min}	(mm)	(150)	(170)	(230)	(270)
Minimum adaa diatanaa		in	3-1/4	4	5	5-1/2
Minimum edge distance	C _{min}	(mm)	(83)	(102)	(127)	(140)
Minimum analyse species	_	in	3-1/4	4	5 (5-1/2
Minimum anchor spacing	S _{min}	(mm)	(83)	(102)	(127)	(140)

Figure 13 - Hilti HIS-N and HIS-RN specifications

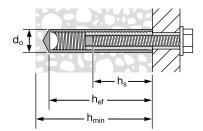


Table 57 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete 1,2,3,4,5,6,7,8,9

			Tension	— ФN _п			Shear	— ФV _п	
Thread size	Effective	f' _c = 2,500 psi	f' c = 3,000 psi	f' _c = 4,000 psi	f'c = 6,000 psi	f' _c = 2,500 psi	f' _c = 3,000 psi	f' _c = 4,000 psi	f' _c = 6,000 psi
	embedment	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)
	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
3/8-16 UNC	4-3/8	7,140	7,820	9,030	11,060	15,375	16,840	19,445	23,815
	(111)	(31.8)	(34.8)	(40.2)	(49.2)	(68.4)	(74.9)	(86.5)	(105.9)
1/2-13 UNC	5	8,720	9,555	11,030	13,510	18,785	20,575	23,760	29,100
	(127)	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)
5/8-11 UNC	6-3/4	13,680	14,985	17,305	21,190	29,460	32,275	37,265	45,645
	(171)	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	(165.8)	(203.0)
3/4-10 UNC	8-1/8	18,065	19,790	22,850	27,985	38,910	42,620	49,215	60,275
	(206)	(80.4)	(88.0)	(101.6)	(124.5)	(173.1)	(189.6)	(218.9)	(268.1)

Table 58 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete 1,2,3,4,5,6,7,8,9

			Tension	— ФN _п			Shear	— ФV _п	
Thread size	Effective	f' c = 2,500 psi	f' c = 3,000 psi	f' c = 4,000 psi	f' c = 6,000 psi	f' _c = 2,500 psi	f'c = 3,000 psi	f' _c = 4,000 psi	f' c = 6,000 psi
	embedment	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)
	in. (mm)	Ib (kN)	Ib (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
3/8-16 UNC	4-3/8	5,050	5,335	5,815	6,570	10,880	11,495	12,530	14,150
	(111)	(22.5)	(23.7)	(25.9)	(29.2)	(48.4)	(51.1)	(55.7)	(62.9)
1/2-13 UNC	5	6,175	6,765	7,815	9,570	13,305	14,575	16,830	20,610
	(127)	(27.5)	(30.1)	(34.8)	(42.6)	(59.2)	(64.8)	(74.9)	(91.7)
5/8-11 UNC	6-3/4	9,690 (43.1)	10,615	12,255 (54.5)	15,010 (66,8)	20,870 (9 2.8)	22,860	26,395	32,330 (143.8)
3/4-10 UNC	8-1/8	12,795	14,015	16,185	19,825	27,560	30,190	34,860	42,695
	(206)	(56.9)	(62.3)	(72.0)	(88.2)	(122.6)	(134.3)	(155.1)	(189.9)

- 1 Sed section & 1. Otor explanation and development of load values
- 2 See section 3.1.8 to convert design strength (factored resistance) value to ASD value.
- 3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- 4 Apply spacing, edge distance, and concrete thickness factors in tables 60 61 as necessary to the above values. Compare to the steel values in table 59. The lesser of the values is to be used for the design.
- 5 Data is for temperature range A: Max. short term temperature = 130° F (55° C), max. long term temperature = 110° F (43° C).

 For temperature range B: Max. short term temperature = 176° F (80° C), max. long term temperature = 110° F (43° C) multiply above values by 0.92.

 For temperature range C: Max. short term temperature = 248° F (120° C), max. long term temperature = 162° F (72° C) multiply above values by 0.78.

 Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- 6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85.
- 7 Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.
- 8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by λ_a as follows: For sand-lightweight, λ_a = 0.51. For all-lightweight, λ_a = 0.45.
- 9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by $\alpha_{seis} = 0.69$.

See section 3.1.8 for additional information on seismic applications.

Table 59 - Steel design strength for steel bolt and cap screw for Hilti HIS-N and HIS-RN internally threaded inserts^{1,2,3}

			ACI 318-14 Chapte	er 17 Based Design		
		ASTM A193 B7		AS	STM A193 Grade B8 stainless steel	ВМ
	Tensile⁴	Shear⁵	Seismic Shear ⁶	Tensile⁴	Shear⁵	Seismic Shear ⁶
Thread size	φN _{sa} lb (kN)	φV _{sa} lb (kN)	φV _{sa,eq} Ib (kN)	φN _{sa} lb (kN)	φV _{sa} Ib (kN)	φV _{sa,eq} Ib (kN)
0/0 16 LING	6,300	3,490	2,445	5,540	3,070	2,150
3/8-16 UNC	(28.0)	(15.5)	(10.9)	(24.6)	(13.7)	(9.6)
1/0 10 UNC	11,530	6,385	4,470	10,145	5,620	3,935
1/2-13 UNC	(51.3)	(28.4)	(19.9)	(45.1)	(25.0)	(17.5)
5/8-11 UNC	18,365	10,170	7,120	16,160	8,950	6,265
5/6-11 UNC	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(45.2)	181.6	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(39,8)	(27.9)
3/4-10 UNC	27,180	15,055	10,540	23,915	13,245	9,270
3/4-10 0140	(120.9)	(67.0)	(46.9)	(106.4)	(58.9)	(41.2)
\mathcal{A}	λ	λ	λ λ λ	\mathcal{L}		

- 1 See section 3.1.8 to convert design strength (factored resistance) value to ASD value.
- 2 Hilti HIS-N and HIS-RN inserts with steel bolts are to be considered brittle steel elements.
- 3 Table values are the lesser of steel failure in the HIS-N insert or inserted steel bolt.
- 4 Tensile = $\phi A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17.
- 5 Shear values determined by static shear tests with $\phi V_{sa} \le \phi \ 0.60 \ A_{se,V} f_{uta}$ as noted in ACI 318-14 Chapter 17.
- 6 Seismic Shear = $\alpha_{v_{sels}}$ $\phi_{v_{sa}}$: Reduction for seismic shear only. See section 3.1.8 for additional information on seismic applications.

Table 60 - Load adjustment Factors for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete 1,2,3

HIS	-N and H	HIS-RN															Edge	distar	nce in	shear						
	ıll diame			acing	factor	r in	Edge	e dista	ance fa	actor	Sp	acing	factor	r in			L		l II	To an	ıd awa	ıy	Cor	ncrete	thickn	ess
	uncrack	ed		tens	sion			in ter	nsion			she	ar4		-	Toward	d edge	Э		from	edge		fa	ctor in	n shea	r ⁵
	concre	te		f	AN			f	RN			f	ΔV			f	RV			f	RV			f	HV	
Thre	ead Size	in.	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4
Emb	edment	in.	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8
	h _{ef}	(mm)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)
-	3-1/4	(83)	0.59	n/a	n/a	n/a	0.36	n/a	n/a	n/a	0.55	n/a	n/a	n/a	0.15	n/a	n/a	n/a	0.31	n/a	n/a	n/a	n/a	n/a	n/a	n/a
in. (mm)	4	(102)	0.61	0.59	n/a	n/a	0.41	0.40	n/a	n/a	0.56	0.55	n/a	n/a	0.21	0.19	n/a	n/a	0.41	0.38	n/a	n/a	n/a	n/a	n/a	n/a
.⊑	5	(127)	0.64	0.61	0.59	n/a	0.47	0.45	0.39	n/a	0.57	0.57	0.55	n/a	0.29	0.26	0.17	n/a	0.47	0.45	0.33	n/a	n/a	n/a	n/a	n/a
E,	5-1/2	(140)	0.65	0.62	0.60	0.59	0.50	0.48	0.41	0.37	0.58	0.58	0.56	0.55	0.34	0.30	0.19	0.15	0.50	0.48	0.39	0.29	n/a	n/a	n/a	n/a
ess	6	(152)	0.67	0.63	0.61	0.60	0.53	0.51	0.43	0.39	0.59	0.58	0.56	0.55	0.39	0.35	0.22	0.17	0.53	0.51	0.43	0.33	0.60	n/a	n/a	n/a
Concrete thickness	7	(178)	0.69	0.66	0.63	0.62	0.61	0.57	0.48	0.42	0.60	0.60	0.57	0.56	0.49	0.43	0.28	0.21	0.61	0.57	0.48	0.42	0.64	0.62	n/a	n/a
e T	8	(203)	0.72	0.68	0.64	0.63	0.70	0.65	0.52	0.45	0.62	0.61	0.58	0.57	0.60	0.53	0.34	0.26	0.70	0.65	0.52	0.45	0.69	0.66	n/a	n/a
cret	9	(229)	0.75	0.70	0.66	0.65	0.78	0.73	0.57	0.49	0.63	0.62	0.59	0.58	0.71	0.63	0.40	0.31	0.78	0.73	0.57	0.49	0.73	0.70	n/a	n/a
Son	10	(254)	0.78	0.72	0.68	0.66	0.87	0.81	0.62	0.53	0.65	0.64	0.60	0.58	0.83	0.74	0.47	0.36	0.87	0.81	0.62	0.53	0.77	0.74	0.64	n/a
_	11	(279)	0.80	0.74	0.70	0.68	0.96	0.89	0.68	0.56	0.66	0.65	0.61	0.59	0.96	0.86	0.55	0.41	0.96	0.89	0.68	0.56	0.81	0.78	0.67	0.61
20	12	(305)	0.83	0.77	0.72	0.70	1.00	0.97	0.74	0.60	0.68	0.66	0.62	0.60	1.00	0.98	0.62	0.47	1.00	0.97	0.74	0.60	0.84	0.81	0.70	0.64
/ Edge distanc (c _a)	14	(356)	0.89	0.81	0.75	0.73		1.00	0.86	0.70	0.71	0.69	0.64	0.62		1.00	0.78	0.59		1.00	0.86	0.70	0.91	0.87	0.75	0.69
je d	16	(406)	0.94	0.86	0.79	0.76			0.98	0.80	0.74	0.72	0.66	0.63			0.96	0.73			0.98	0.80	0.97	0.94	0.80	0.73
ΕĞ	18	(457)	1.00	0.90	0.82	0.80			1.00	0.90	0.77	0.75	0.68	0.65			1.00	0.87			1.00	0.90	1.00	0.99	0.85	0.78
	24	(610)		1.00	0.93	0.90				1.00	0.85	0.83	0.74	0.70				1.00				1.00		1.00	0.99	0.90
ing	30	(762)			1.00	0.99					0.94	0.91	0.80	0.75											1.00	1.00
Spacing (s)	36	(914)				1.00					1.00	0.99	0.86	0.80												1.00
	> 48	(1219)										1.00	0.99	0.90												

Table 61 - Load adjustment factors for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete^{1,2,3}

	N and H																Edge	distar	nce in	shear						
а		IIS-RN	Sp	acing	facto	r in	Eda	e dista	ınce f	actor	Sr	acing	factor	· in					П	To an	d awa	ıv	Cor	ncrete	thick	ness
	II diame	ters	- 1	tens				in ter				she				Towar	– d eda	e		from		,		ctor in		
crac	cked co			,	AN	~		ſ	RN /	~		f	_	~~		_	RV /	, <		f	_	~		r	ну	
	ad Size	in.	3/8	1/2	5/8	3/4	3)(8	1/2	5/8	3/4	3x8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	0/8	1/2	5/8	3/4	3/8	1/2	5/8-	3/4
	edment	in.	4-3/8			8-1/8	-/	5		8-1/8			-/ >	8-1/8				8-1/8	-/-		-/	8-1/8				8-1/8
	h _{ef}	(mm)	(111)		· ~	(206)	\'\'	_	1	1 ′	~	(127)		, ,	~ ′	(127)	1		~	(127)	V	(206)	<u> </u>		(171)	
\neg	3-1/4	(83)	0.59	n/a	n/a	n/a	0.55	n/a	n/a	n/a	0.65	n/a	n/a	n/a	816	/	n/a		6.31	n/a	n/a.	n/a	n/a	n/a	n/s	n/a
(mm)	4	(102)	0.61	0.59	n/a	n/a	<u>ρ</u> 60	0.55	n/a	n/a	0.66	0.55	n/a	n/a	0,21	0.19	n/a	n/a	0.43	0.38	n/a	n/a	n/a	n/a	n/a	n/a
. <u>:</u>	5	(127)	0.64	0.61	0.59	n/a	0.67	0.60	0.56	n/a	0.57	0.57	0.58	n/a	0.80	0.26	0.1	n/a	0.59	0.53	0.34	n/a	n/a	n/a	n/a	n/a
(E)	5-1/2	(140)	0.65	0.62	0.60	0.59	0.71	0.63	0.5%	0.55	0.58	0.58	0.56	0.55	0.34	0.31	0.19	0.15	0.69	0.61	0.39	0.29	n/a	n/a	n	n/a
ss (t	6	(152)	0.67	0.63	0.61	0.60	0. 75	0.66	0.59	0.57	0.59	0.58	0.56	0.55	0.39	0.35	0.22	0.17	0.75	0.66	0.44	0.34	Ø.60	n/a	n/a	n/a
š	7	(178)	0.69	0.66	0.63	0.62	0,83	0.72	0.64	0.61	0.00	0.60	0.57	0.56	0.49	0.44	0.28	0.21	0.83	0.72	0.66	0.42	0.64	0.62	n a	n/a
iğ	8	(203)	0.72	0.68	0.64	0.63	0.91	0.78	0.69	0.66	0.62	0.61	0.58	0.57	0.60	0.54	0.34	0.26	0.91	0.78	0.68	0.52	0,69	0.66	n/a	n/a
refe	9	(229)	0.75	0.70	0.66	0.65	1.00	0.85	0.74	0.70	6.63	0.62	0.59	0.58	8 72	0.64	0.4	0.31	1.00	0.85	0.74	0.62	4.73	0.70	n/g	n/a
Concrete thickness	10	(254)	0.78	0.72	0.68	0.66	ノ	0.91	0.79	0.75	0,65	0.64	0.60	0.58	0,84	0.75	0.48	0.36		0.91	0.79	0.72	0.77	0.74	0.64	n/a
_	11	(279)	0.80	0.74	0.70	0.68	()	0.98	0.84	0.79	0.66	0.65	0.6	0.59	0.97	0.86	0.55	0.42	1	0.98	0.84	0.79	081	0.78	0.67	0.61
Edge distanc (c ₂)	12	(305)	0.83	0.77	0.78	0.70	1	1.00	0.89	0.84	0.68	0.66	0.62	0.60	1.00	0.98	0.63	0.48	イ	1.00	0.89	0.84	0,84	0.81	0.70	0.64
gan	14	(356)	0.89	0.81	0.75	0.73	ノ		1.00	0.94	0.71	0.69	0.64	0.62	ナ	1.00	0.79	0.60	ノ		1.00	0.94	Ø.91	0.88	0.76	0.69
edis	16	(406)	0.94	0.86	0.79	0.76	\Box		\rightarrow	1.00	0.74	0.72	0.66	0.64)		0.97	0.73	$\overline{}$		$\overline{}$	1.00	0.97	0.94	0.81	0.74
B B	18	(457)	1.00	0.90	0.82	0.80	1		\rightarrow		0.77	0.75	0.68	0.65	1		1.00	0.87	1		$\overline{}$		100	0.99	0.86	0.78
<u> </u>	24	(610)		1.00	0.93	0.90	ス				6. 86	0.83	0.74	0.70	ス			1.00	ス		t		く	1.00	0.99	0.90
Spacing (s)	30	(762)			1.00	0.99	ナ		(0.05	0.91	0.81	0.75	\Box						$\overline{}$		ナ		1.00	1.00
bac	36	(914)			\	1.00			\rightarrow		1.00	0.99	0.8	0.80	\cap		\vdash	1			\rightarrow				$\overline{}$	1
N.	> 48	(1219)				,	イ				イ	1.00	0.99	0.91	ス				イ		$\overline{}$		く		abla	T-

When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

³ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$, f_{AV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{HV} = 1.0$.

DESIGN DATA IN CONCRETE PER CSA A23.

CSA A23.3-14 Annex D design

Limit State Design of anchors is described in the provisions of CSA A23.3-14 Annex D for post-installed anchors tested and assessed in accordance with ACI 355.2 for mechanical anchors and ACI 355.4 for adhesive anchors. This section contains the Limit State Design tables with unfactored characteristic loads that are based on the published loads in ICC Evaluation Services ESR-3187 and ELC-3187. These tables are followed by factored resistance tables. The factored resistance tables have characteristic design loads that are prefactored by the applicable reduction factors for a single anchor with no anchor-to-anchor spacing or edge distance adjustments for the convenience of the user of this document. All the figures in the previous ACI 318-14 Chapter 17 design section are applicable to Limit State Design and the tables will reference these figures.

For a detailed explanation of the tables developed in accordance with CSA A23.3-14 Annex D, refer to Section 3.1.8. Technical assistance is available by contacting Hilti Canada at (800) 363-4458 or at www.hilti.com.

Table 62 - Steel factored resistance for Hilti HIT-Z and HIT-Z-R anchor rods1

Nominal	HIT	-Z Carbon Steel R	lod ²	HIT-Z	Z-R Stainless Steel	Rod ²
anchor diameter in.	Tensile N _{sar} ³ lb (kN)	Shear V _{sar} ⁴ lb (kN)	Seismic shear V _{sar,eq} ⁵ lb (kN)	Tensile N _{sar} lb (kN)	Shear V _{sar} ⁴ lb (kN)	Seismic shear V _{sar,eq} ⁵ Ib (kN)
3/8	4,345	1,775	1,775	4,345	2,420	2,420
3/0	(19.3)	(7.9)	(7.9)	(19.3)	(10.8)	(10.8)
1/0	7,960	3,250	2,115	7,960	4,435	3,325
1/2	(35.4)	(14.5)	(9.4)	(35.4)	(19.7)	(14.8)
5/8	12,675	5,180	3,365	12,675	7,065	4,590
5/6	(56.4)	(23.0)	(15.0)	(56.4)	(31.4)	(20.4)
2/4	18,725	7,650	4,975	18,725	10,435	6,785
3/4	(83.3)	(34.0)	(22.1)	(83.3)	(46.4)	(30.2)

¹ See section 3.1.8 to convert design strength value to ASD value.

² HIT-Z and HIT-Z-R anchor rods are considered brittle steel elements.

³ Tensile = $A_{se,N} \phi_s f_{uta} R$ as noted in CSA A23.3-14 Annex D.

⁴ Shear values determined by static shear tests with $V_{sar} \le A_{se,V} \varphi_s 0.60 f_{uta} R$ as noted in CSA A23.3-14 Annex D.

⁵ Seismic Shear = $\alpha_{V_{seis}}$ V_{sas} : Reduction factor for seismic shear only. See section 3.1.8 for additional information on seismic applications.

HIT-HY 200 Adhesive with Hilti HIT-Z anchor rods

Table 63 - Hilti HIT-HY 200 design information with Hilti HIT-Z and HIT-R-Z anchor rods in hammer drilled holes or diamond core drilled holes in accordance with CSA A23.3-141

				N	lominal rod	diameter (ir	1.)	Ref
Design	parameter	Symbol	Units	3/8	1/2	5/8	3/4	A23.3-14
Nomina	al anchor diameter	d _a	mm	9.5	12.7	15.9	19.1	
Effectiv	ve minimum embedment ²	h _{ef}	mm	60	70	95	102	
Effectiv	ve maximum embedment ²	h _{ef}	mm	114	152	190	216	
Minimu	um concrete thickness ³	h _{min}	mm	See table	s 6 to 9 of th ESR-	is section or -3187	table 8 of	
Critical	edge distance	C _{ac}	-	See	section 4.1.	10.1 of ESR-	3187	
Minimu	ım edge distance ⁴	C _{ac}	-	Se	e tables 6 to	9 of this sec	tion	
Minimu	m anchor spacing⁴	S _{min}	-		or table 8 c	of ESR-3187		
Coeff.	for factored concrete breakout resistance, uncracked concrete	k _{c,uncr} ⁵	-		1	0		D.6.2.2
Coeff.	for factored concrete breakout resistance, cracked concrete	k _{c,cr} ⁵	-			7		D.6.2.2
Concre	te material resistance factor	Фс	-		0.	65		8.4.2
Resista Condit	ance modification factor for tension and shear, concrete failure modes, on B ⁴	R _{conc}	-		1.	00		D.5.3(c)
np e A ⁷	Characteristic pullout resistance in cracked concrete	N _{p,cr}	lb (kN)	7,952 (35.4)	10,936 (48.6)	21,391 (95.2)	27,930 (124.2)	D.6.3.1
Temp range A ⁷	Characteristic pullout resistance in uncracked concrete	N _{p,uncr}	lb (kN)	7,952 (35.4)	11,719 (52.1)	21,391 (95.2)	28,460 (126.6)	D.6.3.1
dr B ⁷	Characteristic pullout resistance in cracked concrete	N _{p,cr}	lb (kN)	7,952 (35.4)	10,936 (48.6)	21,391 (95.2)	27,930 (124.2)	D.6.3.1
Temp range B ⁷	Characteristic pullout resistance in uncracked concrete	N _{p,uncr}	lb (kN)	7,952 (35.4)	11,719 (52.1)	21,391 (95.2)	28,460 (126.6)	D.6.3.1
o C	Characteristic pullout resistance in cracked concrete	N _{p,cr}	lb (kN)	7,182 (31.9)	9,877 (43.9)	19,321 (85.9)	25,277 (112.4)	D.6.3.1
Temp range C ⁷	Characteristic pullout resistance in uncracked concrete	N _{p,uncr}	lb (kN)	7,182 (31.9)	10,585 (47.1)	19,321 (85.9)	25,705 (114.3)	D.6.3.1
Reduct	ion for seismic tension	α _{N.seis}	-	0.94		1.0	•	
9 L S	Resistance modification factor tension and shear, pullout failure dry concrete	Anchor category	-	1			D.5.3 (c)	
ssik latic itior	diy concrete	R _{dry}	-		1.	00		
Permissible installation conditions	Resistance modification factor tension and shear, pullout failure water-saturated concrete	Anchor category - 1			1		D.5.3 (c)	
	mater satisfaced soriol of	R _{ws}	-		1.	00		

¹ Design information in this table is taken from ICC-ES ESR-3187, dated April 2019, tables 8 and 10, and converted for use with CSA A23.3-14 Annex D.

² See figure 2 of this section.

³ See figure 5 of this section.

⁴ See figure 6 of this section.

⁵ For all design cases, $\psi_{c,N} = 1.0$. The appropriate coefficient for breakout resistance for cracked concrete $(k_{c,ar})$ or uncracked concrete $(k_{c,unc})$ must be used.

⁶ For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

⁷ Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).
Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C).
Temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C).
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Table 64 - Hilti HIT-HY 200 adhesive factored resistance with concrete/pullout failure for Hilti HIT-Z and HIT-Z-R anchor rods in uncracked concrete^{1,2,3,4,5,6,7,8,9,10}

Nominal			Tensio	on - N _r			Shea	ar - V _r	
anchor diameter in.	Effective embedment in. (mm)	f' = 20 MPa (2,900psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' c = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) Ib (kN)
	2-3/8	3,060	3,425	3,750	4,330	3,060	3,425	3,750	4,330
	(60)	(13.6)	(15.2)	(16.7)	(19.3)	(13.6)	(15.2)	(16.7)	(19.3)
3/8	3-3/8	5,175	5,175	5,175	5,175	10,375	11,600	12,705	14,670
3/6	(86)	(23.0)	(23.0)	(23.0)	(23.0)	(46.1)	(51.6)	(56.5)	(65.3)
	4-1/2	5,175	5,175	5,175	5,175	15,970	17,855	19,560	22,585
	(114)	(23.0)	(23.0)	(23.0)	(23.0)	(71.0)	(79.4)	(87.0)	(100.5)
	2-3/4	3,815	4,265	4,670	5,395	7,630	8,530	9,345	10,790
	(70)	(17.0)	(19.0)	(20.8)	(24.0)	(33.9)	(37.9)	(41.6)	(48.0)
1/2	4-1/2	7,615	7,615	7,615	7,615	15,970	17,855	19,560	22,585
1/2	(114)	(33.9)	(33.9)	(33.9)	(33.9)	(71.0)	(79.4)	(87.0)	(100.5)
	6	7,615	7,615	7,615	7,615	24,590	27,490	30,115	34,775
	(152)	(33.9)	(33.9)	(33.9)	(33.9)	(109.4)	(122.3)	(134.0)	(154.7)
	3-3/4	6,075	6,790	7,440	8,590	12,150	13,585	14,880	17,185
	(95)	(27.0)	(30.2)	(33.1)	(38.2)	(54.0)	(60.4)	(66.2)	(76.4)
5/8	5-5/8	11,160	12,480	13,670	13,895	22,320	24,955	27,335	31,565
3/0	(143)	(49.6)	(55.5)	(60.8)	(61.8)	(99.3)	(111.0)	(121.6)	(140.4)
	7-1/2	13,895	13,895	13,895	13,895	34,365	38,420	42,090	48,600
	(191)	(61.8)	(61.8)	(61.8)	(61.8)	(152.9)	(170.9)	(187.2)	(216.2)
	4	6,690	7,480	8,195	9,465	13,385	14,965	16,395	18,930
	(102)	(29.8)	(33.3)	(36.5)	(42.1)	(59.5)	(66.6)	(72.9)	(84.2)
3/4	6-3/4	14,670	16,400	17,970	18,500	29,340	32,805	35,935	41,495
3/4	(171)	(65.3)	(73.0)	(79.9)	(82.3)	(130.5)	(145.9)	(159.8)	(184.6)
	8-1/2	18,500	18,500	18,500	18,500	41,460	46,355	50,780	58,635
	(216)	(82.3)	(82.3)	(82.3)	(82.3)	(184.4)	(206.2)	(225.9)	(260.8)

Table 65 - Hilti HIT-HY 200 adhesive factored resistance with concrete/pullout failure for Hilti HIT-Z and HIT-Z-R anchor rods in cracked concrete^{1,2,3,4,5,6,7,8,9,10}

Nominal			Tensio	on - N _r			Shea	ar - V _r	
anchor	Effective	f' = 20 MPa	f' = 25 MPa	f' = 30 MPa	f' = 40 MPa	f' = 20 MPa	f' = 25 MPa	f' = 30 MPa	f' = 40 MPa
diameter	embedment	(2,900psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)
in.	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
	2-3/8	2,145	2,395	2,625	3,030	2,145	2,395	2,625	3,030
	(60)	(9.5)	(10.7)	(11.7)	(13.5)	(9.5)	(10.7)	(11.7)	(13.5)
3/8	3-3/8	3,630	4,060	4,445	5,135	7,260	8,120	8,895	10,270
3/0	(86)	(16.2)	(18.1)	(19.8)	(22.8)	(32.3)	(36.1)	(39.6)	(45.7)
	4-1/2	5,175	5,175	5,175	5,175	11,180	12,500	13,695	15,810
	(114)	(23.0)	(23.0)	(23.0)	(23.0)	(49.7)	(55.6)	(60.9)	(70.3)
	2-3/4	2,670	2,985	3,270	3,775	5,340	5,970	6,540	7,555
	(70)	(11.9)	(13.3)	(14.5)	(16.8)	(23.8)	(26.6)	(29.1)	(33.6)
1/0	4-1/2	5,590	6,250	6,845	7,100	11,180	12,500	13,695	15,810
1/2	(114)	(24.9)	(27.8)	(30.5)	(31.6)	(49.7)	(55.6)	(60.9)	(70.3)
	6	7,100	7,100	7,100	7,100	17,215	19,245	21,080	24,340
	(152)	(31.6)	(31.6)	(31.6)	(31.6)	(76.6)	(85.6)	(93.8)	(108.3)
	3-3/4	4,250	4,755	5,210	6,015	8,505	9,510	10,415	12,030
	(95)	(18.9)	(21.1)	(23.2)	(26.8)	(37.8)	(42.3)	(46.3)	(53.5)
5/8	5-5/8	7,810	8,735	9,570	11,050	15,625	17,470	19,135	22,095
5/6	(143)	(34.8)	(38.9)	(42.6)	(49.1)	(69.5)	(77.7)	(85.1)	(98.3)
	7-1/2	12,030	13,445	13,895	13,895	24,055	26,895	29,460	34,020
	(191)	(53.5)	(59.8)	(61.8)	(61.8)	(107.0)	(119.6)	(131.1)	(151.3)
	4	4,685	5,240	5,740	6,625	9,370	10,475	11,475	13,250
	(102)	(20.8)	(23.3)	(25.5)	(29.5)	(41.7)	(46.6)	(51.0)	(58.9)
3/4	6-3/4	10,270	11,480	12,575	14,525	20,540	22,965	25,155	29,045
3/4	(171)	(45.7)	(51.1)	(55.9)	(64.6)	(91.4)	(102.1)	(111.9)	(129.2)
	8-1/2	14,510	16,225	17,775	18,150	29,025	32,450	35,545	41,045
	(216)	(64.6)	(72.2)	(79.1)	(80.7)	(129.1)	(144.3)	(158.1)	(182.6)

- See Section 3.1.8 for explanation on development of load values.
- See Section 3.1.8 to convert design strength value to ASD value.
- 3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- Apply spacing, edge distance, and concrete thickness factors in tables 10 17 as necessary to the above values. Compare to the steel values in table 62. The lesser of the values is to be used for the design.
- 5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 1.00. For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above values by 0.90. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- Tabular values are for dry and water saturated concrete conditions.
- Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
- Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by la as follows: For sand-lightweight, λ_a = 0.51. For all-lightweight, $\lambda_{\perp} = 0.45$.
- Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension only by the following 1/2-in to 3/4-in diameter - $\alpha_{N.seis}$ = 0.75 3/8-in diameter - $\alpha_{N.seis} = 0.705$
- See section 3.1.8 for additional information on seismic applications.

 10 Hilti HIT-Z(-R) rods may be installed in diamond cored holes with no reduction in published data above.

HIT-HY 200 Adhesive with Deformed Reinforcing Bars (Rebar)

Table 66 - Steel factored resistance for CA rebar¹

	cs	A-G30.18 Grade 4	002		
Rebar size	Tensile N _{sar} ³ lb (kN)	Shear V _{sar} ⁴ lb (kN)	Seismic shear V _{sar,eq} ⁵ lb (kN)		
10M	7,245	4,035	2,825		
I UIVI	(32.2)	(17.9)	(12.6)		
15M	14,525	8,090	5,665		
I JIVI	(64.6)	(36.0)	(25.2)		
20M	21,570	12,020	8,415		
20101	(95.9)	(53.5)	(37.4)		
25M	36,025	20,070	14,050		
25101	(160.2)	(89.3)	(62.5)		
30M	50,715	28,255	19,780		
JUIVI	(225.6)	(125.7)	(88.0)		

- 1 See section 3.1.8 to convert design strength value to ASD value.
- 2 CSA-G30.18 Grade 400 rebar are considered ductile steel elements.
- 3 Tensile = $A_{se,N} \phi_s f_{uta} R$ as noted in CSA A23.3-14 Annex D.
- 4 Shear = $A_{se,V} \phi_s 0.60 f_{uta} R$ as noted in CSA A23.3-14 Annex D.
- 5 Seismic Shear = $\alpha_{v,seis}$ V_{sar} : Reduction factor for seismic shear only. See CSA A23.3-14 Annex D for additional information on seismic applications.

Table 67 - Specifications for CA rebar installed with Hilti HIT-HY 200 adhesive

Catting information		Cymphol	Units		F	Rebar siz	е	
Setting information		Symbol	Units	10M	15M	20M	25M	30M
Nominal bit size	d _o	in.	9/16	3/4	1	1-1/4	1-1/2	
Effective	h _{ef,min}	mm	70	80	90	101	120	
embedment	h _{ef,max}	mm	226	320	320 390 504 5			
Minimum concrete n	h _{min}	mm	h _{ef} + 30	h _{ef} + 2d _o				

Note: The installation specifications in table 67 above and the data in tables 66 through 80 pertain to the use of Hilti HIT-HY 200 with rebar designed as a post-installed anchor using the provisions of CSA A23.3-14 Annex D. For the use of Hilti HIT-HY 200 with rebar for typical development calculations according to CSA A23.3-14 Chapter 12, refer to section 3.1.8 for the design method and tables 94 through 98 at the end of this section.

Table 68 - Hilti HIT-HY 200 adhesive design information with CA rebar in hammer drilled holes in accordance with CSA A23.3-14 Annex D¹

<u> </u>						Rebar size	e		Ref	
Design	parameter	Symbol	Units	10M	15M	20M	25M	30M	A23.3-14	
Rebar d	iameter	d _a	mm	11.3	16.0	19.5	25.2	29.9		
Effective	e minimum embedment ²	h _{ef,min}	mm	70	80	90	101	120		
Effective	e maximum embedment ²	h _{ef,max}	mm	226	320	390	504	598		
Minimur	n concrete thickness ²	h _{min}	mm	h _{ef} + 30		h _{ef} +	- 2d _o			
Critical e	edge distance	C _{ac}	-			2h _{ef}				
Minimun	n edge distance	C _{min} ³	mm	57	80	98	126	150		
Minimur	n rebar spacing	S _{min}	mm	57	80	98	126	150		
Coeff. fc	or factored conc. breakout resistance, uncracked concrete	k _{c,uncr} ⁴	-			10			D.6.2.2	
Coeff. fo	or factored conc. breakout resistance, cracked concrete	k _{c,cr} ⁴	-			7			D.6.2.2	
Concret	e material resistance factor	A _{se,N}	-			0.65			8.4.2	
Resistar Condition	ace modification factor for tension and shear, concrete failure modes, on $\ensuremath{B}^{\ensuremath{S}}$	Φ _s	-			1.00			D.5.3(c)	
φ.	Characteristic bond stress in cracked concrete ⁷	~	psi	1,075	1,085	1,095	840	850	D.6.5.2	
Temp range A ⁶	Characteristic bond stress in cracked concrete	τ _{cr}	(MPa)	(7.4)	(7.5)	(7.6)	(5.8)	(5.9)	D.0.3.2	
Te	Characteristic bond stress in uncracked concrete ⁷	$ au_{uncr}$	psi	1,560	1,560	1,560	1,560	1,560	D.6.5.2	
	Onlard Control of the	uncr	(MPa)	(10.8)	(10.8)	(10.8)	(10.8)	(10.8)	D.0.0.2	
a m	Characteristic bond stress in cracked concrete ⁷	τ _{cr}	psi	990	995	1,005	775	780	D.6.5.2	
Temp range B ⁶		Cr	(MPa)	(6.8)	(6.9)	(6.9)	(5.3)	(5.4)		
ran Te	Characteristic bond stress in uncracked concrete ⁷	$ au_{uncr}$	psi	1,435	1,435	1,435	1,435	1,435	D.6.5.2	
			(MPa)	(9.9)	(9.9) 850	(9.9) 860	(9.9)	(9.9) 670	 	
യ് മ	Characteristic bond stress in cracked concrete ⁷	$ au_{cr}$	psi (MPa)	845 (5.8)	(5.9)	(5.9)	660 (4.6)	(4.6)	D.6.5.2	
Temp range C ⁶			psi	1,230	1,230	1,230	1,230	1,230		
_ 교	Characteristic bond stress in uncracked concrete ⁷	$ au_{uncr}$	(MPa)	(8.5)	(8.5)	(8.5)	(8.5)	(8.5)	D.6.5.2	
Reduction	on for seismic tension	α _{N.seis}	-	(0.0)	0.80	(0.0)	0.85	0.97		
		Anchor							 	
% ⊐ <u>e</u>	Resistance modification factor tension & shear, bond failure	category	-			1			D.5.3 (c)	
ssib atio tion	dry concrete	R _{dry}	-	1.00						
Permissible installation conditions ⁵	Desirtance and different in factor to a large of the second of the	Anchor		2				<u> </u>		
¶ ∈ 8	Resistance modification factor tension & shear, bond failure water-saturated concrete	category - 2						D.5.3 (c)		
	Trace Calarated Comprete	R_{dry}	-			0.85				

- 1 Design information in this table is taken from ELC-3187, dated April 2019, tables 16 and 17, for use with CSA A23.3-14 Annex D.
- 2 See figure 8 of this section.
- 3 Minimum edge distance may be reduced to 45mm provided rebar remains untorqued. See ELC-3187 Installation Torque Subject to Edge Distance section.
- 4 For all design cases, $\psi_{c,N} = 1.0$. The appropriate coefficient for breakout resistance for cracked concrete $(k_{c,o})$ or uncracked concrete $(k_{c,o})$ must be used.
- 5 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.
- 6 Temperature range A: Max. short term temperature = 130°F 55°C), max. long term temperature = 110°F (43°C).

 Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C).

 Temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C).

 Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- 7 Bond strength values corresponding to concrete compressive strength $f_c^{\dagger} = 2,500$ psi (17.2 MPa). For concrete compressive strength, f_c^{\dagger} , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ($f_c^{\dagger}/2,500$). [for SI: ($f_c^{\dagger}/17.2$).1].

Table 69 - Hilti HIT-HY 200 adhesive factored resistance with concrete/bond failure for CA rebar in uncracked concrete 1,2,3,4,5,6,7,8,9

			Tensi	on - N _r			Shea	ar - V _r	
Rebar size	Effective embedment in. (mm)	f' = 20 MPa (2,900psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) Ib (kN)
	4-1/2	6,515	6,665	6,785	6,985	13,030	13,325	13,570	13,965
	(115)	(29.0)	(29.6)	(30.2)	(31.1)	(58.0)	(59.3)	(60.4)	(62.1)
1014	7-1/16	10,200	10,430	10,620	10,930	20,395	20,855	21,240	21,860
10M	(180)	(45.4)	(46.4)	(47.2)	(48.6)	(90.7)	(92.8)	(94.5)	(97.2)
	8-7/8	12,805	13,095	13,335	13,725	25,610	26,185	26,670	27,450
	(226)	(57.0)	(58.2)	(59.3)	(61.0)	(113.9)	(116.5)	(118.6)	(122.1)
	5-11/16	11,410	11,895	12,115	12,465	22,820	23,790	24,230	24,935
	(145)	(50.8)	(52.9)	(53.9)	(55.5)	(101.5)	(105.8)	(107.8)	(110.9)
4514	9-13/16	20,055	20,510	20,885	21,495	40,110	41,015	41,770	42,990
15M	(250)	(89.2)	(91.2)	(92.9)	(95.6)	(178.4)	(182.5)	(185.8)	(191.2)
	12-5/8	25,670	26,250	26,735	27,515	51,345	52,500	53,470	55,030
	(320)	(114.2)	(116.8)	(118.9)	(122.4)	(228.4)	(233.5)	(237.8)	(244.8)
	7-7/8	18,485	19,995	20,365	20,960	36,965	39,990	40,730	41,915
	(200)	(82.2)	(88.9)	(90.6)	(93.2)	(164.4)	(177.9)	(181.2)	(186.5)
0014	14	34,710	35,495	36,145	37,200	69,420	70,985	72,290	74,400
20M	(355)	(154.4)	(157.9)	(160.8)	(165.5)	(308.8)	(315.8)	(321.6)	(331.0)
	15-3/8	38,130	38,990	39,710	40,870	76,265	77,985	79,420	81,735
	(390)	(169.6)	(173.4)	(176.6)	(181.8)	(339.2)	(346.9)	(353.3)	(363.6)
	9-1/16	22,795	25,485	27,920	31,145	45,590	50,970	55,835	62,295
	(230)	(101.4)	(113.4)	(124.2)	(138.5)	(202.8)	(226.7)	(248.4)	(277.1)
25M	15-15/16	51,175	52,330	53,290	54,845	102,345	104,655	106,580	109,690
25101	(405)	(227.6)	(232.8)	(237.0)	(244.0)	(455.3)	(465.5)	(474.1)	(487.9)
	19-13/16	63,680	65,120	66,315	68,255	127,365	130,240	132,635	136,505
	(504)	(283.3)	(289.7)	(295.0)	(303.6)	(566.5)	(579.3)	(590.0)	(607.2)
	10-1/4	27,395	30,630	33,555	38,745	54,795	61,260	67,110	77,490
	(260)	(121.9)	(136.3)	(149.3)	(172.3)	(243.7)	(272.5)	(298.5)	(344.7)
30M	17-15/16	63,425	69,750	71,035	73,110	126,850	139,505	142,070	146,220
JUIVI	(455)	(282.1)	(310.3)	(316.0)	(325.2)	(564.3)	(620.5)	(632.0)	(650.4)
	23-9/16	89,650	91,675	93,360	96,085	179,305	183,350	186,725	192,170
	(598)	(398.8)	(407.8)	(415.3)	(427.4)	(797.6)	(815.6)	(830.6)	(854.8)

¹ See Section 3.1.8 for explanation on development of load values.

² See Section 3.1.8 to convert design strength value to ASD value.

³ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

⁴ Apply spacing, edge distance, and concrete thickness factors in tables 71 - 80 as necessary to the above values. Compare to the steel values in table 66. The lesser of the values is to be used for the design.

⁵ Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.92. For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above values by 0.78. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁶ Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85.

⁷ Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

⁸ Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: For sand-lightweight, λ_a = 0.51. For all-lightweight, λ_a = 0.45.

⁹ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 70 - Hilti HIT-HY 200 adhesive factored resistance with concrete/bond failure for CA rebar in cracked concrete^{1,2,3,4,5,6,7,8,9}

			Tensio	on - N _r			Shea	ır - V _r	
Rebar size	Effective embedment in. (mm)	f' = 20 MPa (2,900psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) Ib (kN)
	4-1/2	4,490	4,590	4,675	4,810	8,980	9,185	9,350	9,625
	(115)	(20.0)	(20.4)	(20.8)	(21.4)	(39.9)	(40.8)	(41.6)	(42.8)
4014	7-1/16	7,030	7,185	7,320	7,530	14,055	14,375	14,635	15,065
10M	(180)	(31.3)	(32.0)	(32.6)	(33.5)	(62.5)	(63.9)	(65.1)	(67.0)
	8-7/8	8,825	9,025	9,190	9,455	17,650	18,045	18,380	18,915
	(226)	(39.3)	(40.1)	(40.9)	(42.1)	(78.5)	(80.3)	(81.7)	(84.1)
	5-11/16	7,985	8,275	8,425	8,670	15,975	16,545	16,850	17,345
	(145)	(35.5)	(36.8)	(37.5)	(38.6)	(71.1)	(73.6)	(75.0)	(77.1)
4514	9-13/16	13,950	14,265	14,525	14,950	27,900	28,530	29,055	29,900
15M	(250)	(62.0)	(63.4)	(64.6)	(66.5)	(124.1)	(126.9)	(129.2)	(133.0)
	12-5/8	17,855	18,260	18,595	19,135	35,710	36,515	37,190	38,275
	(320)	(79.4)	(81.2)	(82.7)	(85.1)	(158.8)	(162.4)	(165.4)	(170.2)
	7-7/8	12,940	14,035	14,295	14,710	25,875	28,070	28,590	29,420
	(200)	(57.6)	(62.4)	(63.6)	(65.4)	(115.1)	(124.9)	(127.2)	(130.9)
20M	14	24,365	24,915	25,370	26,110	48,725	49,825	50,745	52,225
20101	(355)	(108.4)	(110.8)	(112.9)	(116.2)	(216.7)	(221.6)	(225.7)	(232.3)
	15-3/8	26,765	27,370	27,875	28,685	53,530	54,740	55,745	57,375
	(390)	(119.1)	(121.7)	(124.0)	(127.6)	(238.1)	(243.5)	(248.0)	(255.2)
	9-1/16	15,650	16,000	16,295	16,770	31,295	32,005	32,590	33,545
	(230)	(69.6)	(71.2)	(72.5)	(74.6)	(139.2)	(142.4)	(145.0)	(149.2)
25M	15-15/16	27,555	28,175	28,695	29,530	55,110	56,355	57,390	59,065
23101	(405)	(122.6)	(125.3)	(127.6)	(131.4)	(245.1)	(250.7)	(255.3)	(262.7)
	19-13/16	34,290	35,065	35,710	36,750	68,580	70,130	71,420	73,505
	(504)	(152.5)	(156.0)	(158.8)	(163.5)	(305.1)	(311.9)	(317.7)	(327.0)
	10-1/4	19,180	21,440	22,115	22,765	38,355	42,885	44,235	45,525
	(260)	(85.3)	(95.4)	(98.4)	(101.3)	(170.6)	(190.8)	(196.8)	(202.5)
30M	17-15/16	37,165	38,005	38,705	39,835	74,335	76,010	77,410	79,670
JUIVI	(455)	(165.3)	(169.1)	(172.2)	(177.2)	(330.7)	(338.1)	(344.3)	(354.4)
	23-9/16	48,850	49,950	50,870	52,355	97,695	99,900	101,740	104,710
	(598)	(217.3)	(222.2)	(226.3)	(232.9)	(434.6)	(444.4)	(452.6)	(465.8)

- 1 See Section 3.1.8 for explanation on development of load values.
- 2 See Section 3.1.8 to convert design strength value to ASD value.
- 3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- 4 Apply spacing, edge distance, and concrete thickness factors in tables 71 80 as necessary to the above values. Compare to the steel values in table 66. The lesser of the values is to be used for the design.
- 5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.92. For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above values by 0.78. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- 6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85.
- 7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
- 8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: For sand-lightweight, λ_a = 0.51. For all-lightweight, λ_a = 0.45.
- 9 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors: 10M to $20M \alpha_{\text{seis}} = 0.60$, $25M \alpha_{\text{seis}} = 0.64$, $30M \alpha_{\text{seis}} = 0.73$ See section 3.1.8 for additional information on seismic applications.

Table 71 - Load adjustment factors for 10M rebar in uncracked concrete^{1,2,3}

													Edg	je distar	nce in st	near				
	10M uncracke concrete	-		acing factors $f_{\scriptscriptstyle{AN}}$			distance n tension $f_{\scriptscriptstyle{\mathrm{RN}}}$			acing factors $f_{\scriptscriptstyle{AV}}$		То	ward ed f_{RV}	ge		o and avrom edg $f_{\rm RV}$	•		rete thic tor in sh	
E	mbedmen	t h _{ef}	4-1/2	7-1/16	8-7/8	4-1/2	7-1/16	8-7/8	4-1/2	7-1/16	8-8/9	4-1/2	7-1/16	8-7/8	4-1/2	7-1/16	8-7/8	4-1/2	7-1/16	8-7/8
	in.	(mm)	(115)	(180)	(226)	(115)	(180)	(226)	(115)	(180)	(226)	(115)	(180)	(226)	(115)	(180)	(226)	(115)	(180)	(226)
Ê	1-3/4	(44)	n/a	n/a	n/a	0.25	0.15	0.12	n/a	n/a	n/a	0.06	0.04	0.03	0.12	0.08	0.06	n/a	n/a	n/a
(mm)	2-3/16	(55)	0.58	0.55	0.54	0.27	0.17	0.13	0.53	0.52	0.52	0.09	0.05	0.04	0.17	0.11	0.09	n/a	n/a	n/a
.⊑	3	(76)	0.61	0.57	0.56	0.31	0.20	0.15	0.54	0.53	0.53	0.14	0.09	0.07	0.28	0.18	0.14	n/a	n/a	n/a
(h), -	4	(102)	0.65	0.59	0.57	0.37	0.23	0.18	0.56	0.54	0.54	0.22	0.14	0.11	0.40	0.28	0.22	n/a	n/a	n/a
	5	(127)	0.68	0.62	0.59	0.44	0.27	0.21	0.57	0.56	0.55	0.30	0.19	0.15	0.46	0.35	0.31	n/a	n/a	n/a
neg	5-11/16	(145)	0.71	0.63	0.61	0.49	0.30	0.24	0.59	0.56	0.55	0.37	0.23	0.19	0.51	0.37	0.33	0.58	n/a	n/a
호	6	(152)	0.72	0.64	0.61	0.51	0.32	0.25	0.59	0.57	0.56	0.40	0.25	0.20	0.53	0.38	0.34	0.60	n/a	n/a
concrete thickness	7	(178)	0.76	0.66	0.63	0.60	0.37	0.29	0.60	0.58	0.57	0.50	0.32	0.25	0.60	0.42	0.36	0.65	n/a	n/a
iet	8	(203)	0.79	0.69	0.65	0.68	0.42	0.33	0.62	0.59	0.58	0.61	0.39	0.31	0.68	0.46	0.39	0.69	n/a	n/a
ő	8-1/4	(210)	0.80	0.69	0.65	0.71	0.44	0.35	0.62	0.59	0.58	0.64	0.41	0.33	0.71	0.47	0.40	0.70	0.61	n/a
_	9	(229)	0.83	0.71	0.67	0.77	0.48	0.38	0.63	0.60	0.59	0.73	0.47	0.37	0.77	0.50	0.42	0.73	0.63	n/a
(c_a)	10-1/16	(256)	0.87	0.74	0.69	0.86	0.53	0.42	0.65	0.61	0.60	0.86	0.55	0.44	0.86	0.54	0.45	0.78	0.67	0.62
၁င	11	(279)	0.90	0.76	0.71	0.94	0.58	0.46	0.66	0.62	0.61	0.98	0.63	0.50	0.94	0.58	0.48	0.81	0.70	0.65
distance	12	(305)	0.94	0.78	0.72	1.00	0.64	0.50	0.68	0.63	0.61	1.00	0.72	0.57	1.00	0.64	0.51	0.85	0.73	0.68
Ö	14	(356)	1.00	0.83	0.76		0.74	0.59	0.71	0.66	0.63		0.90	0.72		0.74	0.59	0.92	0.79	0.73
edge	16	(406)		0.88	0.80		0.85	0.67	0.74	0.68	0.65		1.00	0.88		0.85	0.67	0.98	0.84	0.78
_	18	(457)		0.92	0.84		0.96	0.75	0.77	0.70	0.67			1.00		0.96	0.75	1.00	0.89	0.83
(s)	24	(610)		1.00	0.95		1.00	1.00	0.86	0.77	0.73					1.00	1.00		1.00	0.96
Spacing	30	(762)			1.00				0.95	0.83	0.79									1.00
bac	36	(914)							1.00	0.90	0.84									
တ	> 48	(1219)							1	1.00	0.96									

Table 72 - Load adjustment factors for 10M rebar in cracked concrete^{1,2,3}

													Edg	je distar	nce in sh	near				
	10M cracked	i		acing fac n tension			distance n tensior			acing fac		То	 ward ed	ge		o and av	•		rete thic	
	concrete	Э		f_{\scriptscriptstyleAN}			$f_{\scriptscriptstyle{RN}}$			f_{\scriptscriptstyleAV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleHV}	
Е	mbedmen	t h _{ef}	4-1/2	7-1/16	8-7/8	4-1/2	7-1/16	8-7/8	4-1/2	7-1/16	8-8/9	4-1/2	7-1/16	8-7/8	4-1/2	7-1/16	8-7/8	4-1/2	7-1/16	8-7/8
	in.	(mm)	(115)	(180)	(226)	(115)	(180)	(226)	(115)	(180)	(226)	(115)	(180)	(226)	(115)	(180)	(226)	(115)	(180)	(226)
Ê	1-3/4	(44)	n/a	n/a	n/a	0.49	0.44	0.42	n/a	n/a	n/a	0.06	0.04	0.03	0.13	0.08	0.07	n/a	n/a	n/a
(mm)	2-3/16	(55)	0.58	0.55	0.54	0.52	0.46	0.43	0.53	0.52	0.52	0.09	0.06	0.05	0.18	0.11	0.09	n/a	n/a	n/a
.⊑	3	(76)	0.61	0.57	0.56	0.60	0.50	0.47	0.55	0.53	0.53	0.15	0.09	0.07	0.29	0.19	0.15	n/a	n/a	n/a
(h), -	4	(102)	0.65	0.59	0.57	0.70	0.56	0.51	0.56	0.55	0.54	0.22	0.14	0.11	0.45	0.29	0.23	n/a	n/a	n/a
	5	(127)	0.68	0.62	0.59	0.80	0.62	0.56	0.58	0.56	0.55	0.31	0.20	0.16	0.62	0.40	0.32	n/a	n/a	n/a
concrete thickness	5-11/16	(145)	0.71	0.63	0.61	0.88	0.66	0.59	0.59	0.56	0.56	0.38	0.24	0.19	0.76	0.49	0.39	0.59	n/a	n/a
충	6	(152)	0.72	0.64	0.61	0.91	0.68	0.61	0.59	0.57	0.56	0.41	0.26	0.21	0.82	0.52	0.42	0.61	n/a	n/a
₽	7	(178)	0.76	0.66	0.63	1.00	0.74	0.65	0.61	0.58	0.57	0.52	0.33	0.26	1.00	0.66	0.53	0.66	n/a	n/a
ret	8	(203)	0.79	0.69	0.65		0.81	0.70	0.62	0.59	0.58	0.63	0.40	0.32		0.81	0.64	0.70	n/a	n/a
ouo	8-1/4	(210)	0.80	0.69	0.65		0.83	0.72	0.63	0.59	0.58	0.66	0.42	0.34		0.83	0.68	0.71	0.61	n/a
_	9	(229)	0.83	0.71	0.67		0.88	0.76	0.64	0.60	0.59	0.75	0.48	0.38		0.88	0.76	0.74	0.64	n/a
(c _a	10-1/16	(256)	0.87	0.74	0.69		0.96	0.81	0.65	0.61	0.60	0.89	0.57	0.46		0.96	0.81	0.79	0.68	0.63
Ge	11	(279)	0.90	0.76	0.71		1.00	0.86	0.67	0.63	0.61	1.00	0.65	0.52		1.00	0.86	0.82	0.71	0.66
distance	12	(305)	0.94	0.78	0.72			0.92	0.68	0.64	0.62		0.74	0.59			0.92	0.86	0.74	0.69
ig.	14	(356)	1.00	0.83	0.76			1.00	0.71	0.66	0.64		0.94	0.74			1.00	0.93	0.80	0.74
edge	16	(406)		0.88	0.80				0.75	0.68	0.66		1.00	0.91				0.99	0.85	0.79
Ā	18	(457)		0.92	0.84				0.78	0.70	0.68			1.00				1.00	0.91	0.84
(8)	24	(610)		1.00	0.95				0.87	0.77	0.73								1.00	0.97
ü	30	(762)			1.00				0.96	0.84	0.79									1.00
Spacing (36	(914)							1.00	0.91	0.85									
S	> 48	(1219)								1.00	0.97									

¹ Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D. 4 Spacing factor reduction in shear applicable when $c < 3^*h_{er}$, f_{AV} is applicable when edge distance, $c < 3^*h_{er}$. If $c \ge 3^*h_{er}$, then $f_{AV} = f_{AN}$.

⁵ Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3^*h_{el}$. If $c \ge 3^*h_{el}$, then $f_{HV} = 1.0$.

Table 73 - Load adjustment factors for 15M rebar in uncracked concrete^{1,2,3}

													Edg	ge distar	nce in sh	near				
	15M uncrack concret			acing factors $f_{\scriptscriptstyle{AN}}$			distance $f_{\scriptscriptstyle{RN}}$			acing factions $f_{\scriptscriptstyle{AV}}$		То	ward ed f_{RV}	ge		o and awrom edge $f_{\rm RV}$	•		rete thic tor in she $f_{\scriptscriptstyle{\mathrm{HV}}}$	
Fn	nbedmer	nt h	5-11/16		12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16		12-5/8	5-11/16	9-13/16	12-5/8
	in.	(mm)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)
<u> </u>	1-3/4	(44)	n/a	n/a	n/a	0.25	0.14	0.11	n/a	n/a	n/a	0.04	0.02	0.02	0.08	0.05	0.04	n/a	n/a	n/a
(mm)	3-1/8	(80)	0.59	0.55	0.54	0.31	0.17	0.13	0.54	0.53	0.52	0.10	0.06	0.05	0.20	0.12	0.09	n/a	n/a	n/a
.⊑	4	(102)	0.62	0.57	0.55	0.35	0.19	0.15	0.55	0.53	0.53	0.14	0.08	0.07	0.29	0.17	0.13	n/a	n/a	n/a
1	5	(127)	0.65	0.58	0.57	0.39	0.22	0.17	0.56	0.54	0.53	0.20	0.12	0.09	0.40	0.23	0.18	n/a	n/a	n/a
s (h),	6	(152)	0.68	0.60	0.58	0.44	0.25	0.19	0.57	0.55	0.54	0.27	0.15	0.12	0.45	0.31	0.24	n/a	n/a	n/a
concrete thickness	7	(178)	0.70	0.62	0.59	0.49	0.27	0.21	0.58	0.56	0.55	0.33	0.19	0.15	0.50	0.35	0.30	n/a	n/a	n/a
홍	7-1/4	(184)	0.71	0.62	0.60	0.50	0.28	0.22	0.58	0.56	0.55	0.35	0.20	0.16	0.51	0.35	0.31	0.58	n/a	n/a
÷	8	(203)	0.73	0.64	0.61	0.54	0.30	0.24	0.59	0.56	0.55	0.41	0.24	0.18	0.55	0.37	0.33	0.61	n/a	n/a
iet	9	(229)	0.76	0.65	0.62	0.61	0.34	0.26	0.60	0.57	0.56	0.49	0.28	0.22	0.61	0.40	0.35	0.64	n/a	n/a
ouc	10	(254)	0.79	0.67	0.63	0.68	0.38	0.29	0.61	0.58	0.57	0.57	0.33	0.26	0.68	0.43	0.37	0.68	n/a	n/a
_	11-3/8	(289)	0.83	0.69	0.65	0.77	0.43	0.33	0.63	0.59	0.58	0.69	0.40	0.31	0.77	0.46	0.39	0.72	0.60	n/a
(c_a)	12	(305)	0.85	0.70	0.66	0.81	0.46	0.35	0.64	0.60	0.58	0.75	0.43	0.34	0.81	0.48	0.40	0.74	0.62	n/a
distance	14-1/8	(359)	0.91	0.74	0.69	0.96	0.54	0.42	0.66	0.61	0.60	0.96	0.55	0.43	0.96	0.54	0.45	0.81	0.67	0.62
star	16	(406)	0.97	0.77	0.71	1.00	0.61	0.47	0.68	0.63	0.61	1.00	0.67	0.52	1.00	0.61	0.49	0.86	0.71	0.66
Ġ	18	(457)	1.00	0.80	0.74		0.68	0.53	0.71	0.64	0.62		0.80	0.62		0.68	0.54	0.91	0.76	0.70
edge	20	(508)		0.84	0.76		0.76	0.59	0.73	0.66	0.63		0.93	0.73		0.76	0.59	0.96	0.80	0.73
_	22	(559)		0.87	0.79		0.84	0.65	0.75	0.67	0.65		1.00	0.84		0.84	0.65	1.00	0.84	0.77
(s)	24	(610)		0.91	0.82		0.91	0.71	0.78	0.69	0.66			0.96		0.91	0.71		0.87	0.80
Spacing (30	(762)		1.00	0.90		1.00	0.88	0.84	0.74	0.70			1.00		1.00	0.88		0.98	0.90
Spa	36	(914)			0.98			1.00	0.91	0.79	0.74						1.00		1.00	0.99
	> 48	(1219)			1.00				1.00	0.88	0.82	l								1.00

Table 74 - Load adjustment factors for 15M rebar in cracked concrete^{1,2,3}

													Edg	e distar	nce in sh	ear				
	15M cracked concrete			acing factors $f_{\scriptscriptstyle{AN}}$			distance tension $f_{\scriptscriptstyle{RN}}$			acing factors $f_{\scriptscriptstyle{\mathrm{AV}}}$		То	ward ed	ge		o and avoid and edge $f_{\rm RV}$	•		rete thickor in she $f_{\scriptscriptstyle \mathrm{HV}}$	
Е	mbedmen	t h _{ef}	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8	5-11/16	9-13/16	12-5/8
	in.	(mm)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)	(145)	(250)	(320)
Ē	1-3/4	(44)	n/a	n/a	n/a	0.46	0.41	0.40	n/a	n/a	n/a	0.04	0.02	0.02	0.09	0.05	0.04	n/a	n/a	n/a
(mm)	3-1/8	(80)	0.59	0.55	0.54	0.55	0.46	0.44	0.54	0.53	0.52	0.10	0.06	0.05	0.21	0.12	0.09	n/a	n/a	n/a
.⊑	4	(102)	0.62	0.57	0.55	0.62	0.50	0.46	0.55	0.53	0.53	0.15	0.09	0.07	0.30	0.17	0.13	n/a	n/a	n/a
(h), -	5	(127)	0.65	0.58	0.57	0.69	0.54	0.49	0.56	0.54	0.53	0.21	0.12	0.09	0.41	0.24	0.19	n/a	n/a	n/a
S	6	(152)	0.68	0.60	0.58	0.77	0.58	0.52	0.57	0.55	0.54	0.27	0.16	0.12	0.54	0.31	0.25	n/a	n/a	n/a
concrete thickness	7	(178)	0.70	0.62	0.59	0.86	0.62	0.56	0.58	0.56	0.55	0.34	0.20	0.15	0.68	0.40	0.31	n/a	n/a	n/a
호	7-1/4	(184)	0.71	0.62	0.60	0.88	0.63	0.56	0.58	0.56	0.55	0.36	0.21	0.16	0.72	0.42	0.33	0.58	n/a	n/a
e	8	(203)	0.73	0.64	0.61	0.95	0.66	0.59	0.59	0.56	0.55	0.42	0.24	0.19	0.84	0.48	0.38	0.61	n/a	n/a
iret	9	(229)	0.76	0.65	0.62	1.00	0.71	0.62	0.60	0.57	0.56	0.50	0.29	0.23	1.00	0.58	0.45	0.65	n/a	n/a
Ö	10	(254)	0.79	0.67	0.63		0.76	0.66	0.62	0.58	0.57	0.58	0.34	0.26		0.68	0.53	0.68	n/a	n/a
_	11-3/8	(289)	0.83	0.69	0.65		0.82	0.71	0.63	0.59	0.58	0.71	0.41	0.32		0.82	0.64	0.73	0.61	n/a
(c_a)	12	(305)	0.85	0.70	0.66		0.86	0.73	0.64	0.60	0.58	0.77	0.44	0.35		0.86	0.70	0.75	0.62	n/a
ce	14-1/8	(359)	0.91	0.74	0.69		0.97	0.81	0.66	0.61	0.60	0.98	0.57	0.44		0.97	0.81	0.81	0.68	0.62
distance	16	(406)	0.97	0.77	0.71		1.00	0.88	0.69	0.63	0.61	1.00	0.69	0.54		1.00	0.88	0.86	0.72	0.66
g	18	(457)	1.00	0.80	0.74			0.96	0.71	0.65	0.62		0.82	0.64			0.96	0.92	0.76	0.70
edge	20	(508)		0.84	0.76			1.00	0.73	0.66	0.64		0.96	0.75			1.00	0.96	0.80	0.74
_	22	(559)		0.87	0.79				0.76	0.68	0.65		1.00	0.86				1.00	0.84	0.78
(s)	24	(610)		0.91	0.82				0.78	0.69	0.66			0.98					0.88	0.81
Spacing (30	(762)		1.00	0.90				0.85	0.74	0.71			1.00					0.99	0.91
bac	36	(914)			0.98				0.92	0.79	0.75								1.00	0.99
<u> </u>	> 48	(1219)			1.00				1.00	0.89	0.83									1.00

¹ Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.

⁴ Spacing factor reduction in shear applicable when $c < 3^*h_{ef}$, f_{AVP} is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$, then $f_{AV} = f_{ANP}$. So Concrete thickness reduction factor in shear, f_{HVP} is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$, then $f_{HVP} = 1.0$.

Table 75 - Load adjustment factors for 20M rebar in uncracked concrete^{1,2,3}

													Edq	ge distar	ice in sh	ear				
	20M uncrack			acing factors f_{AN}			distance $f_{\scriptscriptstyle \mathrm{RN}}$			acing facing facing $f_{\scriptscriptstyle{\mathrm{AV}}}$		То	ward ec	lge		and avom edg	•		rete thic for in sh	
	mbedmer	nt h	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8
_	in.	(mm)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)
	1-3/4	(44)	n/a	n/a	n/a	0.21	0.11	0.10	n/a	n/a	n/a	0.03	0.01	0.01	0.06	0.03	0.03	n/a	n/a	n/a
(mm)	3-7/8	(98)	0.58	0.55	0.54	0.27	0.15	0.13	0.53	0.52	0.52	0.09	0.05	0.04	0.18	0.10	0.09	n/a	n/a	n/a
E.	4	(102)	0.58	0.55	0.54	0.27	0.15	0.13	0.53	0.52	0.52	0.10	0.05	0.05	0.19	0.10	0.09	n/a	n/a	n/a
.⊑	5	(127)	0.61	0.56	0.55	0.30	0.17	0.15	0.54	0.53	0.53	0.13	0.07	0.07	0.27	0.14	0.13	n/a	n/a	n/a
Ē,	6	(152)	0.63	0.57	0.57	0.34	0.18	0.17	0.55	0.53	0.53	0.17	0.09	0.09	0.35	0.19	0.17	n/a	n/a	n/a
	7	(178)	0.65	0.58	0.58	0.37	0.20	0.18	0.56	0.54	0.54	0.22	0.12	0.11	0.41	0.24	0.22	n/a	n/a	n/a
concrete thickness	8	(203)	0.67	0.60	0.59	0.41	0.22	0.20	0.57	0.55	0.54	0.27	0.15	0.13	0.44	0.29	0.26	n/a	n/a	n/a
hic	9	(229)	0.69	0.61	0.60	0.45	0.24	0.22	0.58	0.55	0.55	0.32	0.17	0.16	0.47	0.33	0.32	n/a	n/a	n/a
te t	10	(254)	0.71	0.62	0.61	0.49	0.27	0.24	0.59	0.56	0.55	0.38	0.20	0.18	0.51	0.35	0.33	0.59	n/a	n/a
ore	11	(279)	0.73	0.63	0.62	0.54	0.29	0.27	0.60	0.56	0.56	0.43	0.23	0.21	0.55	0.37	0.35	0.62	n/a	n/a
8	12	(305)	0.75	0.64	0.63	0.59	0.32	0.29	0.60	0.57	0.56	0.49	0.27	0.24	0.59	0.38	0.36	0.65	n/a	n/a
(c _a)/	14	(356)	0.80	0.67	0.65	0.69	0.37	0.34	0.62	0.58	0.58	0.62	0.34	0.31	0.69	0.42	0.40	0.70	n/a	n/a
ပ္	16	(406)	0.84	0.69	0.67	0.78	0.43	0.39	0.64	0.59	0.59	0.76	0.41	0.37	0.78	0.46	0.43	0.74	0.61	n/a
anc	18	(457)	0.88	0.71	0.70	0.88	0.48	0.44	0.66	0.60	0.60	0.91	0.49	0.45	0.88	0.50	0.46	0.79	0.64	0.62
distance	20	(508)	0.92	0.74	0.72	0.98	0.53	0.48	0.67	0.62	0.61	1.00	0.57	0.52	0.98	0.54	0.50	0.83	0.68	0.66
ge c	22	(559)	0.97	0.76	0.74	1.00	0.59	0.53	0.69	0.63	0.62		0.66	0.60	1.00	0.59	0.54	0.87	0.71	0.69
edge	24	(610)	1.00	0.79	0.76		0.64	0.58	0.71	0.64	0.63		0.76	0.69		0.64	0.58	0.91	0.74	0.72
/ (s)	26	(660)		0.81	0.78		0.69	0.63	0.73	0.65	0.64		0.85	0.78		0.69	0.63	0.95	0.77	0.75
	28	(711)		0.83	0.80		0.75	0.68	0.74	0.66	0.65		0.95	0.87		0.75	0.68	0.99	0.80	0.78
Spacing	30	(762)		0.86	0.83		0.80	0.73	0.76	0.67	0.66		1.00	0.96		0.80	0.73	1.00	0.83	0.81
Sp	36	(914)		0.93	0.89		0.96	0.87	0.81	0.71	0.69			1.00		0.96	0.87		0.91	0.88
	> 48	(1219)		1.00	1.00		1.00	1.00	0.92	0.78	0.76					1.00	1.00		1.00	1.00

Table 76 - Load adjustment factors for 20M rebar in cracked concrete^{1,2,3}

													Ed	ge distan	ice in sh	ear				
	20M cracked concret			acing factors $f_{\scriptscriptstyle{AN}}$			distance tensio $f_{\scriptscriptstyle{RN}}$			acing fands $f_{\scriptscriptstyle {\sf AV}}$		То	ward ed	lge		and avoing and $f_{\rm RV}$,		rete thic for in sh	
Е	mbedmer	nt h	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8	7-7/8	14	15-3/8
	in.	(mm)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)	(200)	(355)	(390)
	1-3/4	(44)	n/a	n/a	n/a	0.43	0.39	0.39	n/a	n/a	n/a	0.03	0.02	0.01	0.06	0.03	0.03	n/a	n/a	n/a
(mm)	3-7/8	(98)	0.58	0.55	0.54	0.53	0.45	0.44	0.53	0.52	0.52	0.09	0.05	0.05	0.18	0.10	0.09	n/a	n/a	n/a
Έ.	4	(102)	0.58	0.55	0.54	0.54	0.45	0.44	0.54	0.52	0.52	0.10	0.05	0.05	0.19	0.10	0.10	n/a	n/a	n/a
.⊑	5	(127)	0.61	0.56	0.55	0.59	0.48	0.47	0.54	0.53	0.53	0.14	0.07	0.07	0.27	0.15	0.13	n/a	n/a	n/a
Ē,	6	(152)	0.63	0.57	0.57	0.64	0.51	0.49	0.55	0.53	0.53	0.18	0.10	0.09	0.36	0.19	0.17	n/a	n/a	n/a
SS	7	(178)	0.65	0.58	0.58	0.70	0.53	0.52	0.56	0.54	0.54	0.22	0.12	0.11	0.45	0.24	0.22	n/a	n/a	n/a
thickness	8	(203)	0.67	0.60	0.59	0.76	0.56	0.54	0.57	0.55	0.54	0.27	0.15	0.13	0.55	0.30	0.27	n/a	n/a	n/a
ţ	9	(229)	0.69	0.61	0.60	0.82	0.59	0.57	0.58	0.55	0.55	0.33	0.18	0.16	0.65	0.35	0.32	n/a	n/a	n/a
	10	(254)	0.71	0.62	0.61	0.88	0.62	0.60	0.59	0.56	0.55	0.38	0.21	0.19	0.77	0.41	0.38	0.59	n/a	n/a
concrete	11	(279)	0.73	0.63	0.62	0.95	0.65	0.62	0.60	0.56	0.56	0.44	0.24	0.22	0.88	0.48	0.43	0.62	n/a	n/a
	12	(305)	0.75	0.64	0.63	1.00	0.69	0.65	0.61	0.57	0.57	0.50	0.27	0.25	1.00	0.54	0.49	0.65	n/a	n/a
(c _a)/	14	(356)	0.80	0.67	0.65		0.75	0.71	0.62	0.58	0.58	0.64	0.34	0.31		0.68	0.62	0.70	n/a	n/a
) e	16	(406)	0.84	0.69	0.67		0.82	0.77	0.64	0.59	0.59	0.77	0.42	0.38		0.82	0.76	0.75	0.61	n/a
distance	18	(457)	0.88	0.71	0.70		0.89	0.83	0.66	0.60	0.60	0.93	0.50	0.45		0.89	0.83	0.80	0.65	0.63
Sist	20	(508)	0.92	0.74	0.72		0.96	0.90	0.68	0.62	0.61	1.00	0.58	0.53		0.96	0.90	0.84	0.68	0.66
edge (22	(559)	0.97	0.76	0.74		1.00	0.96	0.69	0.63	0.62		0.67	0.61		1.00	0.96	0.88	0.72	0.69
8	24	(610)	1.00	0.79	0.76			1.00	0.71	0.64	0.63		0.77	0.70			1.00	0.92	0.75	0.72
(s	26	(660)		0.81	0.78				0.73	0.65	0.64		0.87	0.79				0.96	0.78	0.75
Spacing (s)	28	(711)		0.83	0.80				0.75	0.66	0.65		0.97	0.88				0.99	0.81	0.78
aci	30	(762)		0.86	0.83				0.76	0.67	0.66		1.00	0.98				1.00	0.84	0.81
S	36	(914)		0.93	0.89				0.82	0.71	0.70			1.00					0.92	0.89
	> 48	(1219)		1.00	1.00				0.92	0.78	0.76								1.00	1.00

¹ Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.

⁴ Spacing factor reduction in shear applicable when $c < 3*h_{ef}$, f_{AV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{AV} = f_{AN}$. 5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3*h_{ef}$. If $c \ge 3*h_{ef}$, then $f_{HV} = 1.0$.

Table 77 - Load adjustment factors for 25M rebar in uncracked concrete 1,2,3

													Edg	ge distar	nce in sh	near				
	25M uncracke concrete	-		acing fac n tension			distance n tension			acing faction f_{AV}		То	ward ed f_{BV}	ge		o and av om edg	,		rete thic tor in she $f_{\scriptscriptstyle{\mathrm{HV}}}$	
			9-1/16	<i>f</i> _{AN} 15-15/16	19-13/16	9-1/16	J _{RN}	19-13/16	9-1/16	15-15/16	19-13/16	9-1/16		19-13/16	9-1/16	J _{RV}	19-13/16	9-1/16		19-13/16
E	mbedmen	eı	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	,
	in. 1-3/4	(mm) (44)	n/a	n/a	n/a	0.22	0.12	0.10	(230) n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.02	n/a	n/a	(504) n/a
(mm)	5	(127)	0.59	0.55	0.54	0.22	0.12	0.10	0.54	0.52	0.52	0.02	0.01	0.01	0.04	0.02	0.02	n/a	n/a	
in. (n	6	(152)	0.59	0.56	0.54	0.33	0.17	0.13	0.55	0.52	0.52	0.11	0.05	0.04	0.22	0.10	0.08	n/a	n/a	n/a n/a
· <u>-</u>	7	(178)	0.63	0.57	0.56	0.36	0.10	0.14	0.55	0.53	0.52	0.14	0.08	0.03	0.26	0.13	0.10	n/a	n/a	n/a
Ē,	8	(203)	0.65	0.57	0.57	0.39	0.20	0.10	0.56	0.54	0.53	0.10	0.00	0.08	0.30	0.10	0.13	n/a	n/a	n/a
SSS	9	(229)	0.67	0.59	0.58	0.42	0.23	0.17	0.57	0.54	0.53	0.26	0.10	0.00	0.41	0.24	0.10	n/a	n/a	n/a
ž	10	(254)	0.68	0.60	0.58	0.42	0.25	0.10	0.58	0.54	0.54	0.30	0.12	0.03	0.47	0.24	0.13	n/a	n/a	n/a
concrete thickness	11-9/16	(294)	0.71	0.62	0.60	0.50	0.28	0.22	0.59	0.55	0.54	0.38	0.17	0.14	0.52	0.34	0.28	0.59	n/a	n/a
ete	12	(305)	0.72	0.63	0.60	0.52	0.28	0.23	0.59	0.55	0.55	0.40	0.17	0.15	0.53	0.36	0.29	0.60	n/a	n/a
Ď	14	(356)	0.76	0.65	0.62	0.60	0.33	0.26	0.61	0.56	0.55	0.50	0.23	0.18	0.60	0.39	0.34	0.65	n/a	n/a
8	16	(406)	0.79	0.67	0.63	0.69	0.38	0.30	0.62	0.57	0.56	0.62	0.28	0.22	0.69	0.42	0.37	0.69	n/a	n/a
(c ^a)	18	(457)	0.83	0.69	0.65	0.77	0.42	0.34	0.64	0.58	0.57	0.74	0.33	0.27	0.77	0.46	0.39	0.74	n/a	n/a
	18-7/16	(469)	0.84	0.69	0.66	0.79	0.43	0.35	0.64	0.58	0.57	0.76	0.35	0.28	0.79	0.46	0.40	0.75	0.57	n/a
distance	20	(508)	0.87	0.71	0.67	0.86	0.47	0.37	0.65	0.59	0.58	0.86	0.39	0.31	0.86	0.49	0.42	0.78	0.60	n/a
dis	22-3/8	(568)	0.91	0.73	0.69	0.96	0.53	0.42	0.67	0.60	0.59	1.00	0.46	0.37	0.96	0.53	0.45	0.82	0.63	0.59
edge	24	(610)	0.94	0.75	0.70	1.00	0.56	0.45	0.68	0.61	0.59		0.51	0.41	1.00	0.56	0.47	0.85	0.65	0.61
96	26	(660)	0.98	0.77	0.72		0.61	0.49	0.70	0.62	0.60		0.58	0.46		0.61	0.50	0.89	0.68	0.63
(s)	28	(711)	1.00	0.79	0.74		0.66	0.52	0.71	0.62	0.61		0.65	0.52		0.66	0.53	0.92	0.71	0.66
ing	30	(762)		0.81	0.75		0.71	0.56	0.73	0.63	0.62		0.72	0.58		0.71	0.56	0.95	0.73	0.68
Spacing	36	(914)		0.88	0.80		0.85	0.67	0.77	0.66	0.64		0.94	0.76		0.85	0.67	1.00	0.80	0.74
<u>~</u>	> 48	(1219)		1.00	0.90		1.00	0.90	0.86	0.71	0.68		1.00	1.00		1.00	0.90		0.92	0.86

Table 78 - Load adjustment factors for 25M rebar in cracked concrete^{1,2,3}

													Edg	je distar	ice in st	near				
	25M cracked concrete			acing factors $f_{\scriptscriptstyle{AN}}$			distance $f_{\scriptscriptstyle{RN}}$			acing facing facing $f_{_{\mathrm{AV}}}$		То	ward ed f_{BV}	ge		o and average $f_{\rm RV}$	•		rete thic tor in she $f_{\scriptscriptstyle{\mathrm{HV}}}$	
	mbedmen		9-1/16		19-13/16	9-1/16		19-13/16	9-1/16		19-13/16	9-1/16		19-13/16	9-1/16		19-13/16	9-1/16		19-13/16
_	in.	(mm)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)	(230)	(405)	(504)
_	1-3/4	(44)	n/a	n/a	n/a	0.42	0.39	0.38	n/a	n/a	n/a	0.02	0.01	0.01	0.05	0.03	0.02	n/a	n/a	n/a
(mm)	5	(127)	0.59	0.55	0.54	0.42	0.46	0.44	0.54	0.53	0.52	0.02	0.01	0.01	0.03	0.03	0.02	n/a	n/a	n/a
i.	6	(152)	0.61	0.56	0.55	0.60	0.48	0.46	0.55	0.53	0.53	0.15	0.08	0.07	0.30	0.17	0.14	n/a	n/a	n/a
1	7	(178)	0.63	0.57	0.56	0.65	0.51	0.48	0.55	0.54	0.53	0.19	0.11	0.09	0.38	0.17	0.17	n/a	n/a	n/a
Ξ,	8	(203)	0.65	0.58	0.57	0.70	0.53	0.50	0.56	0.54	0.54	0.23	0.13	0.11	0.46	0.26	0.17	n/a	n/a	n/a
concrete thickness	9	(229)	0.67	0.59	0.58	0.75	0.56	0.51	0.57	0.55	0.54	0.27	0.16	0.13	0.55	0.20	0.25	n/a	n/a	n/a
Ř	10	(254)	0.68	0.60	0.58	0.80	0.59	0.53	0.58	0.55	0.55	0.32	0.18	0.15	0.64	0.37	0.29	n/a	n/a	n/a
ţ	11-9/16	(294)	0.71	0.62	0.60	0.89	0.63	0.57	0.59	0.56	0.55	0.40	0.23	0.18	0.80	0.46	0.37	0.60	n/a	n/a
ete	12	(305)	0.72	0.63	0.60	0.91	0.64	0.58	0.59	0.56	0.56	0.42	0.24	0.19	0.85	0.48	0.39	0.61	n/a	n/a
j	14	(356)	0.76	0.65	0.62	1.00	0.69	0.62	0.61	0.58	0.56	0.53	0.30	0.24	1.00	0.61	0.49	0.66	n/a	n/a
8	16	(406)	0.79	0.67	0.63		0.75	0.66	0.63	0.59	0.57	0.65	0.37	0.30		0.74	0.59	0.71	n/a	n/a
(c _a)	18	(457)	0.83	0.69	0.65		0.81	0.71	0.64	0.60	0.58	0.78	0.44	0.35		0.81	0.71	0.75	n/a	n/a
	18-7/16	(469)	0.84	0.69	0.66		0.83	0.72	0.64	0.60	0.59	0.81	0.46	0.37		0.83	0.72	0.76	0.63	n/a
distance	20	(508)	0.87	0.71	0.67		0.87	0.75	0.66	0.61	0.59	0.91	0.52	0.42		0.87	0.75	0.79	0.66	n/a
dis	22-3/8	(568)	0.91	0.73	0.69		0.95	0.81	0.68	0.62	0.60	1.00	0.61	0.49		0.95	0.81	0.84	0.69	0.64
edge	24	(610)	0.94	0.75	0.70		1.00	0.85	0.69	0.63	0.61		0.68	0.55		1.00	0.85	0.87	0.72	0.67
9	26	(660)	0.98	0.77	0.72			0.90	0.70	0.64	0.62		0.77	0.62			0.90	0.90	0.75	0.69
(8)	28	(711)	1.00	0.79	0.74		İ	0.95	0.72	0.65	0.63		0.86	0.69			0.95	0.94	0.78	0.72
Spacing	30	(762)		0.81	0.75			1.00	0.73	0.66	0.64		0.95	0.76			1.00	0.97	0.80	0.75
oaci	36	(914)		0.88	0.80				0.78	0.69	0.67		1.00	1.00				1.00	0.88	0.82
Ϋ́	> 48	(1219)		1.00	0.90				0.88	0.76	0.72								1.00	0.94

¹ Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.

⁴ Spacing factor reduction in shear applicable when $c < 3^*h_{ef}$ f_{AV} is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$ then $f_{AV} = f_{AN}$. 5 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3^*h_{ef}$. If $c \ge 3^*h_{ef}$, then $f_{HV} = 1.0$.

Table 79 - Load adjustment factors for 30M rebar in uncracked concrete^{1,2,3}

													Edg	je distar	ice in sh	near				
	30M uncracke concrete	-		acing factors $f_{\scriptscriptstyle{AN}}$		-	distance $f_{\scriptscriptstyle{RN}}$			acing faction f_{AV}		To	oward ed $f_{\rm RV}$	ge		o and avrom edg $f_{\rm RV}$	•		rete thic tor in she $f_{\scriptscriptstyle \mathrm{HV}}$	
	mbedment		10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16
_	in.	(mm)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)
	1-3/4	(44)	n/a	n/a	n/a	0.23	0.13	0.09	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.01	n/a	n/a	n/a
Ê	5-7/8	(150)	0.60	0.55	0.54	0.33	0.18	0.13	0.54	0.52	0.52	0.12	0.05	0.04	0.23	0.10	0.07	n/a	n/a	n/a
(mm)	6	(152)	0.60	0.56	0.54	0.33	0.18	0.13	0.54	0.52	0.52	0.12	0.05	0.04	0.24	0.10	0.07	n/a	n/a	n/a
.⊑	7	(178)	0.61	0.57	0.55	0.36	0.19	0.14	0.55	0.53	0.52	0.15	0.06	0.05	0.30	0.13	0.09	n/a	n/a	n/a
Ē,	8	(203)	0.63	0.57	0.56	0.38	0.20	0.15	0.55	0.53	0.52	0.18	0.08	0.06	0.36	0.16	0.11	n/a	n/a	n/a
	9	(229)	0.65	0.58	0.56	0.41	0.22	0.16	0.56	0.53	0.53	0.22	0.09	0.07	0.42	0.19	0.13	n/a	n/a	n/a
concrete thickness	10	(254)	0.66	0.59	0.57	0.44	0.23	0.18	0.57	0.54	0.53	0.25	0.11	0.08	0.45	0.22	0.16	n/a	n/a	n/a
ള	11	(279)	0.68	0.60	0.58	0.46	0.25	0.19	0.57	0.54	0.53	0.29	0.13	0.09	0.47	0.25	0.18	n/a	n/a	n/a
te t	12	(305)	0.70	0.61	0.58	0.49	0.26	0.20	0.58	0.55	0.54	0.33	0.14	0.10	0.50	0.29	0.21	n/a	n/a	n/a
cre	13-1/4	(337)	0.72	0.62	0.59	0.53	0.28	0.21	0.59	0.55	0.54	0.39	0.17	0.12	0.54	0.33	0.24	0.60	n/a	n/a
8	14	(356)	0.73	0.63	0.60	0.55	0.30	0.22	0.59	0.55	0.54	0.42	0.18	0.13	0.56	0.36	0.26	0.61	n/a	n/a
_	16	(406)	0.76	0.65	0.61	0.63	0.34	0.25	0.61	0.56	0.55	0.51	0.22	0.16	0.63	0.40	0.32	0.65	n/a	n/a
(c _a)	18	(457)	0.79	0.67	0.63	0.71	0.38	0.28	0.62	0.57	0.56	0.61	0.26	0.19	0.71	0.42	0.36	0.69	n/a	n/a
ü	20	(508)	0.83	0.69	0.64	0.79	0.42	0.32	0.63	0.58	0.56	0.72	0.31	0.22	0.79	0.45	0.38	0.73	n/a	n/a
distance	20-7/8	(531)	0.84	0.69	0.65	0.82	0.44	0.33	0.64	0.58	0.56	0.77	0.33	0.24	0.82	0.47	0.39	0.75	n/a	n/a
e c	22	(559)	0.86	0.70	0.66	0.87	0.46	0.35	0.65	0.58	0.57	0.83	0.36	0.26	0.87	0.49	0.40	0.77	0.58	n/a
edge	24	(610)	0.89	0.72	0.67	0.94	0.50	0.38	0.66	0.59	0.57	0.94	0.41	0.29	0.94	0.52	0.42	0.80	0.61	n/a
/ (s)	26-9/16	(675)	0.93	0.75	0.69	1.00	0.56	0.42	0.68	0.60	0.58	1.00	0.47	0.34	1.00	0.56	0.45	0.84	0.64	0.57
	28	(711)	0.96	0.76	0.70		0.59	0.44	0.69	0.61	0.59		0.51	0.37		0.59	0.47	0.86	0.65	0.59
Spacing	30	(762)	0.99	0.78	0.71		0.63	0.47	0.70	0.61	0.59		0.57	0.41		0.63	0.49	0.89	0.68	0.61
Sp	36	(914)	1.00	0.83	0.75		0.76	0.57	0.74	0.64	0.61		0.75	0.54		0.76	0.57	0.98	0.74	0.66
	> 48	(1219)		0.95	0.84		1.00	0.76	0.82	0.68	0.65		1.00	0.83		1.00	0.76	1.00	0.86	0.77

Table 80 - Load adjustment factors for 30M rebar in cracked concrete^{1,2,3}

													Edg	je distar	ice in st	near				
	30M cracked			acing factors $f_{\scriptscriptstyle{AN}}$			distance n tension $f_{_{BN}}$			acing faction f_{AV}		To	ward ed f_{BV}	ge		o and avrom edg	,		rete thic tor in she $f_{\scriptscriptstyle{\mathrm{HV}}}$	
	mbedmen		10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16	10-1/4	17-15/16	23-9/16
	in.	(mm)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)	(260)	(455)	(598)
	1-3/4	(44)	n/a	n/a	n/a	0.41	0.38	0.38	n/a	n/a	n/a	0.02	0.01	0.01	0.04	0.02	0.02	n/a	n/a	n/a
Ê	5-7/8	(150)	0.60	0.55	0.54	0.41	0.36	0.36	0.54	0.53	0.52	0.02	0.01	0.01	0.04	0.02	0.02	n/a	n/a	n/a
(mm)	6	(150)	0.60	0.56	0.54	0.56	0.47	0.44	0.54	0.53	0.52	0.12	0.06	0.05	0.23	0.12	0.09	n/a n/a	n/a	n/a n/a
.⊑	7	(178)	0.60	0.57	0.54	0.61	0.47	0.44	0.54	0.53	0.52	0.12	0.08	0.05	0.24	0.13	0.10		n/a	n/a
, '	8	(203)	0.63	0.57	0.55	0.65	0.49	0.46	0.55	0.53	0.53	0.15	0.08	0.06	0.30	0.16	0.12	n/a	- / -	
s (h),		(/						_										n/a	n/a	n/a
concrete thickness	9	(229)	0.65	0.58	0.56	0.69	0.53	0.49	0.56	0.54	0.53	0.22	0.12	0.09	0.44	0.23	0.18	n/a	n/a	n/a
옹	10	(254)	0.66	0.59	0.57	0.74	0.56	0.50	0.57	0.54	0.54	0.26	0.14	0.10	0.52	0.27	0.21	n/a	n/a	n/a
Ē	11	(279)	0.68	0.60	0.58	0.79	0.58	0.52	0.57	0.55	0.54	0.30	0.16	0.12	0.60	0.31	0.24	n/a	n/a	n/a
ète	12	(305)	0.70	0.61	0.58	0.83	0.60	0.54	0.58	0.55	0.54	0.34	0.18	0.14	0.68	0.36	0.27	n/a	n/a	n/a
DC	13-1/4	(337)	0.72	0.62	0.59	0.89	0.63	0.56	0.59	0.56	0.55	0.40	0.21	0.16	0.79	0.41	0.32	0.60	n/a	n/a
8	14	(356)	0.73	0.63	0.60	0.93	0.65	0.57	0.59	0.56	0.55	0.43	0.22	0.17	0.86	0.45	0.34	0.62	n/a	n/a_
(c ^a)	16	(406)	0.76	0.65	0.61	1.00	0.70	0.61	0.61	0.57	0.56	0.52	0.27	0.21	1.00	0.55	0.42	0.66	n/a	n/a
é	18	(457)	0.79	0.67	0.63		0.75	0.64	0.62	0.58	0.57	0.62	0.33	0.25		0.65	0.50	0.70	n/a	n/a
anc	20	(508)	0.83	0.69	0.64		0.81	0.68	0.64	0.59	0.57	0.73	0.38	0.29		0.77	0.58	0.74	n/a	n/a
distance	20-7/8	(531)	0.84	0.69	0.65		0.83	0.70	0.64	0.59	0.58	0.78	0.41	0.31		0.82	0.62	0.75	n/a	n/a
ge c	22	(559)	0.86	0.70	0.66		0.86	0.72	0.65	0.60	0.58	0.84	0.44	0.34		0.86	0.67	0.77	0.62	n/a
edge	24	(610)	0.89	0.72	0.67		0.92	0.76	0.66	0.61	0.59	0.96	0.50	0.38		0.92	0.76	0.81	0.65	n/a
/ (s)	26-9/16	(675)	0.93	0.75	0.69		0.99	0.81	0.68	0.62	0.60	1.00	0.59	0.45		0.99	0.81	0.85	0.68	0.62
	28	(711)	0.96	0.76	0.70		1.00	0.84	0.69	0.62	0.60		0.63	0.48		1.00	0.84	0.87	0.70	0.64
Spacing	30	(762)	0.99	0.78	0.71			0.88	0.70	0.63	0.61		0.70	0.54			0.88	0.90	0.73	0.66
Sp	36	(914)	1.00	0.83	0.75			1.00	0.74	0.66	0.63		0.93	0.70			1.00	0.99	0.80	0.73
	> 48	(1219)		0.95	0.84				0.82	0.71	0.68		1.00	1.00				1.00	0.92	0.84

Linear interpolation not permitted.

² Shaded area with reduced edge distance is permitted provided the rebar has no installation torque.

³ When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from CSA A23.3-14 Annex D.

Spacing factor reduction in shear applicable when $c < 3^*h_{er}$. f_{AV} is applicable when edge distance, $c < 3^*h_{er}$. If $c \ge 3^*h_{er}$, then $f_{AV} = f_{AN}$. Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance, $c < 3^*h_{er}$. If $c \ge 3^*h_{er}$, then $f_{HV} = 1.0$.

HIT-HY 200 Adhesive with Hilti HAS Threaded Rod

Table 81 - Steel factored resistance for Hilti HAS threaded rods for use with CSA A23.3-14 Annex D

		'-36 / HAS-V-3 TM F1554 Gr.:			-55 / HAS-E-5 M F1554 Gr. 5		AS	105 / HAS-B- TM A193 B7 a M F 1554 Gr.1	and	HAS-R stainless steel ASTM F593 (3/8-in to 1-in) ⁵ ASTM A193 (1-1/8-in to 2-in) ⁴			
Nominal anchor diameter in.	Tensile¹ ΦN _{sar} Ib (kN)	Shear² ΦV _{sar} Ib (kN)	Seismic Shear ³ $\Phi V_{\text{sar,eq}}$ Ib (kN)	Tensile¹ ΦΝ _{sar} Ib (kN)	Shear ² ΦV_{sar} Ib (kN)	Seismic Shear³ $\Phi V_{_{sar,eq}}$ Ib (kN)	Tensile¹ ΦΝ _{sar} Ib (kN)	Shear ² ΦV_{sar} Ib (kN)	Seismic Shear ³ $\Phi V_{\text{sar,eq}}$ Ib (kN)	Tensile¹ ФN _{sar} Ib (kN)	Shear ² ΦV_{sar} Ib (kN)	Seismic Shear ³ $\Phi V_{\text{sar,eq}}$ Ib (kN)	
3/8	3,055	1,720	1,030	3,955	2,225	1,560	6,570	3,695	2,585	4,610	2,570	1,800	
3/6	(13.6)	(7.7)	(4.6)	(17.6)	(9.9)	(6.9)	(29.2)	(16.4)	(11.5)	(20.5)	(11.4)	(8.0)	
1/2	5,595	, , , , , ,		7,240	4,070	2,850	12,035	6,765	4,735	8,445	4,705	3,295	
1/2	(24.9)	(14.0)	(8.4)	(32.2)	(18.1)	(12.7)	(53.5)	(30.1)	(21.1)	(37.6)	(20.9)	(14.7)	
E /0	8,915	5,015	3,010	11,525	6,485	4,540	19,160	10,780	7,545	13,445	7,490	5,245	
5/8	(39.7)	(22.3)	(13.4)	(51.3)	(28.8)	(20.2)	(85.2)	(48.0)	(33.6)	(59.8)	(33.3)	(23.3)	
3/4	13,190	7,420	4,450	17,060	9,600	6,720	28,365	15,955	11,170	16,920	9,425	6,600	
3/4	(58.7)	(33.0)	(19.8)	(75.9)	(42.7)	(29.9)	(126.2)	(71.0)	(49.7)	(75.3)	(41.9)	(29.4)	
7/8	18,210	10,245	6,145	23,550	13,245	9,270	39,150	22,020	15,415	23,350	13,010	9,105	
1/0	(81.0)	(45.6)	(27.3)	(104.8)	(58.9)	(41.2)	(174.1)	(97.9)	(68.6)	(103.9)	(57.9)	(40.5)	
-	23,890	13,440	8,065	30,890	17,380	12,165	51,360	28,890	20,225	30,635	17,065	11,945	
1	(106.3)	(59.8)	(35.9)	(137.4)	(77.3)	(54.1)	(228.5)	(128.5)	(90.0)	(136.3)	(75.9)	(53.1)	
1 1/4	38,225	21,500	12,900	49,425	27,800	19,460	82,175	46,220	32,355	37,565	21,130	12,680	
1-1/4	(170.0)	(95.6)	(57.4)	(219.9)	(123.7)	(86.6)	(365.5)	(205.6)	(143.9)	(167.1)	(94.0)	(56.4)	

Tensile = A_{se,N} φ f_{uta} R as noted in CSA A23.3-14 Eq. D.2.
 Shear = A_{se,V} φ 0.60 f_{uta} R as noted in CSA A23.3-14 Eq. D.31.
 Seismic Shear = α_{v,seis} V_{sar} : Reduction factor for seismic shear only. See CSA A23.3 Annex D for additional information on seismic applications. Seismic shear for HIT-RE 500 V3

⁴ HAS-V, HAS-E (3/8-in to 1-1/4-in), HAS-B, and HAS-R (Class 1; 1-1/4-in) threaded rods are considered ductile steel elements (including HDG rods).

⁵ HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements.

^{6 6 3/8-}inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

Table 82 - Hilti HIT-HY 200 design information with Hilti HAS threaded rods in hammer drilled holes in accordance with CSA A23.3-14 Annex D¹

						Nomina	rod diam	eter (in.)			Ref
Design	n parameter	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4	A23.3-14
Nomina	al anchor Diameter	d _a	mm	9.5	12.7	15.9	19.1	22.2	25.4	31.8	
Effectiv	ve minimum embedment ²	h _{ef,min}	mm	60	70	79	89	89	102	127	
Effectiv	ve maximum embedment ²	h _{ef,max}	mm	191	254	318	381	445	508	635	
Minimu	ım concrete thickness²	h _{min}	mm	h _{ef}	+ 30			h _{ef} + 2d ₀			
Critical	edge distance	C _{ac}					2h _{ef}				
Minimu	ım edge distance	C _{min}	mm	45	45	50 ³	55³	60³	70³	80³	
Minimu	ım anchor spacing	S _{min}	mm	48	64	79	95	111	127	159	
	for factored conc. breakout resistance, ked concrete	k _{c,uncr} ⁴	-				10				D.6.2.2
	for factored conc. breakout resistance, d concrete	k _{c,cr} ⁴	-				7				D.6.2.2
Concre	ete material resistance factor	Фс	-	0.65						8.4.2	
	ance modification factor for tension and shear, te failure modes, Condition B ⁵	R _{conc}	-				1.00				
Temp. range A ⁶	Characteristic bond stress in cracked concrete ⁷	$\tau_{\rm cr}$	psi (MPa)	1,045 (7.2)	1,135 (7.7)	1,170 (8.2)	1,260 (8.4)	1,290 (8.6)	1,325 (8.7)	1,380 (9.1)	D.6.5.2
Temp. ange A			psi	2,220	2,220	2,220	2,220	2,220	2,220	2,220	
- <u>6</u>	Characteristic bond stress in uncracked concrete ⁷	$ au_{uncr}$	(MPa)	(15.3)	(15.3)	(15.3)	(15.3)	(15.3)	(15.3)	(15.3)	D.6.5.2
	Characteristic hand atrace in available apparets?	_	psi	1,045	1,135	1,170	1,260	1,290	1,325	1,380	D.6.5.2
Temp. range B ⁶	Characteristic bond stress in cracked concrete ⁷	$ au_{ m cr}$	(MPa)	(7.2)	(7.7)	(8.2)	(8.4)	(8.6)	(8.7)	(9.1)	D.6.5.2
Ter	Characteristic bond stress in uncracked concrete ⁷	τ _{uncr}	psi	2,220	2,220	2,220	2,220	2,220	2,220	2,220	D.6.5.2
	Characteristic Bond Street III difference Control	uncr	(MPa)	(15.3)	(15.3)	(15.3)	(15.3)	(15.3)	(15.3)	(15.3)	D.0.0.2
. ئ	Characteristic bond stress in cracked concrete ⁷	τ_{cr}	psi	885	930	960	1,035	1,055	1,085	1,130	D.6.5.2
Temp. range C ⁶		u	(MPa)	(6.1)	(6.3)	(6.7)	(6.9)	(7.3)	(7.1)	(7.4)	
ran Te	Characteristic bond stress in uncracked concrete ⁷	τ _{uncr}	psi (MD-)	1,820	1,820	1,820	1,820	1,820	1,820	1,820	D.6.5.2
Dadios			(MPa)	(12.6) 0.88	(12.6)	(12.6) 99	(12.6)	.0 (12.6)	(12.6) 0.95	(12.6)	
Reduci	Reduction for seismic tension		_	0.00	J 0.	99		.0	0.95	0.99	
ble on ns	Resistance modification factor tension & shear, bond failure dry concrete	Anchor	-				1				D.5.3 (c)
issil Ilati Iltion	222 2 3 4., 20	R _{dry}	-				1.00				ļ
Permissible installation conditions	Resistance modification factor tension & shear, bond failure water-saturated concrete	Anchor category	-	- 1				D.5.3 (c)			
	ianure water-saturated correte	R _{ws}	-				1.00				

- 1 Design information in this table is taken from ELC-3187, dated April 2019, tables 8 and 10 for use with CSA A23.3-14 Annex D.
- 2 See figure 10 of this section.
- 3 Minimum edge distance may be reduced to $45 \text{mm} \le c_{ai} < 5 \text{d}$ provided T_{inst} is reduced. See ELC-3187 Installation Torque Subject to Edge Distance section.
- 4 For all design cases, $\psi_{c,N} = 1.0$. The appropriate coefficient for breakout resistance for cracked concrete ($k_{c,cr}$) or uncracked concrete ($k_{c,unc}$) must be used.
- 5 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.
- 6 Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).
 Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C).
 Temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C).
 Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- 7 Bond strength values corresponding to concrete compressive strength f'_{c} = 2,500 psi (17.2 MPa). For concrete compressive strength, f'_{c} , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_{c}/2,500)^{0.1}$ [for SI: $(f'_{c}/17.2)^{0.1}$].

Table 83 - Hilti HIT-HY 200 adhesive factored resistance with concrete/bond failure for threaded rod in uncracked concrete^{1,2,3,4,5,6,7,8,9}

Nominal			Tensi	on - N _r			Shea	ar - V _r	
anchor diameter in.	Effective embedment in. (mm)	f' c = 20 MPa (2,900psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f'c = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)
	2-3/8	3,060	3,425	3,750	4,330	3,060	3,425	3,750	4,330
	(60)	(13.6)	(15.2)	(16.7)	(19.3)	(13.6)	(15.2)	(16.7)	(19.3)
	3-3/8	5,185	5,800	6,065	6,245	10,375	11,600	12,135	12,490
3/8	(86)	(23.1)	(25.8)	(27.0)	(27.8)	(46.1)	(51.6)	(54.0)	(55.6)
0,0	4-1/2	7,770	7,945	8,090	8,325	15,535	15,885	16,180	16,650
	(114)	(34.6)	(35.3)	(36.0)	(37.0)	(69.1)	(70.7)	(72.0)	(74.1)
	7-1/2	12,945	13,240	13,485	13,875	25,895	26,480	26,965	27,755
	(191)	(57.6)	(58.9)	(60.0)	(61.7)	(115.2)	(117.8)	(119.9)	(123.5)
	2-3/4	3,815	4,265	4,670	5,395	7,630	8,530	9,345	10,790
	(70)	(17.0)	(19.0)	(20.8)	(24.0)	(33.9)	(37.9)	(41.6)	(48.0)
	4-1/2	7,985	8,930	9,780	11,100	15,970	17,855	19,560	22,200
1/2	(114)	(35.5)	(39.7)	(43.5)	(49.4)	(71.0)	(79.4)	(87.0)	(98.8)
	6	12,295	13,745	14,380	14,800	24,590	27,490	28,765	29,605
	(152)	(54.7)	(61.1)	(64.0)	(65.8)	(109.4)	(122.3)	(127.9)	(131.7)
	10	23,015	23,535	23,970	24,670	46,035	47,075	47,940	49,340
-	(254)	(102.4)	(104.7)	(106.6)	(109.7)	(204.8)	(209.4)	(213.2)	(219.5)
	3-1/8	4,620 (20.6)	5,165 (23.0)	5,660 (25.2)	6,535	9,245	10,335	11,320 (50.4)	13,070
	(79) 5-5/8	11,160	12,480	13,670	(29.1) 15,785	(41.1) 22,320	(46.0) 24,955	27,335	(58.1) 31,565
	(143)	(49.6)	(55.5)	(60.8)	(70.2)	(99.3)	(111.0)	(121.6)	(140.4)
5/8	7-1/2	17,185	19,210	21,045	23,125	34,365	38,420	42,090	46,255
	(191)	(76.4)	(85.5)	(93.6)	(102.9)	(152.9)	(170.9)	(187.2)	(205.8)
	12-1/2	35,965	36,775	37,450	38,545	71,930	73,550	74,905	77,090
	(318)	(160.0)	(163.6)	(166.6)	(171.5)	(320.0)	(327.2)	(333.2)	(342.9)
	3-1/2	5,480	6,125	6,710	7,745	10,955	12,250	13,420	15,495
	(89)	(24.4)	(27.2)	(29.8)	(34.5)	(48.7)	(54.5)	(59.7)	(68.9)
	6-3/4	14,670	16,400	17,970	20,745	29,340	32,805	35,935	41,495
	(171)	(65.3)	(73.0)	(79.9)	(92.3)	(130.5)	(145.9)	(159.8)	(184.6)
3/4	9	22,585	25,255	27,665	31,945	45,175	50,505	55,325	63,885
	(229)	(100.5)	(112.3)	(123.1)	(142.1)	(200.9)	(224.7)	(246.1)	(284.2)
	15	48,600	52,955	53,930	55,505	97,200	105,915	107,865	111,010
	(381)	(216.2)	(235.6)	(239.9)	(246.9)	(432.4)	(471.1)	(479.8)	(493.8)
	3-1/2	5,480	6,125	6,710	7,745	10,955	12,250	13,420	15,495
	(89)	(24.4)	(27.2)	(29.8)	(34.5)	(48.7)	(54.5)	(59.7)	(68.9)
	7-7/8	18,485	20,670	22,640	26,145	36,975	41,340	45,285	52,290
7.0	(200)	(82.2)	(91.9)	(100.7)	(116.3)	(164.5)	(183.9)	(201.4)	(232.6)
7/8	10-1/2	28,465	31,820	34,860	40,255	56,925	63,645	69,720	80,505
	(267)	(126.6)	(141.6)	(155.1)	(179.1)	(253.2)	(283.1)	(310.1)	(358.1)
	17-1/2	61,240	68,470	73,405	75,550	122,485	136,940	146,815	151,100
	(445)	(272.4)	(304.6)	(326.5)	(336.1)	(544.8)	(609.1)	(653.1)	(672.1)
	4	6,690	7,480	8,195	9,465	13,385	14,965	16,395	18,930
	(102)	(29.8)	(33.3)	(36.5)	(42.1)	(59.5)	(66.6)	(72.9)	(84.2)
	9	22,585	25,255	27,665	31,945	45,175	50,505	55,325	63,885
1	(229)	(100.5)	(112.3)	(123.1)	(142.1)	(200.9)	(224.7)	(246.1)	(284.2)
·	12	34,775	38,880	42,590	49,180	69,550	77,760	85,180	98,360
	(305)	(154.7)	(172.9)	(189.5)	(218.8)	(309.4)	(345.9)	(378.9)	(437.5)
	20	74,825	83,655	91,640	98,675	149,650	167,310	183,280	197,355
	(508)	(332.8)	(372.1)	(407.6)	(438.9)	(665.7)	(744.2)	(815.3)	(877.9)
	5	9,355	10,455	11,455	13,225	18,705	20,915	22,910	26,455
	(127)	(41.6)	(46.5)	(51.0)	(58.8)	(83.2)	(93.0)	(101.9)	(117.7)
	11-1/4	31,565	35,290	38,660	44,640	63,135	70,585	77,320	89,285
1-1/4	(286)	(140.4)	(157.0)	(172.0)	(198.6)	(280.8)	(314.0)	(343.9)	(397.1)
, -	15	48,600	54,335	59,520	68,730	97,200	108,670	119,045	137,460
	(381)	(216.2)	(241.7)	(264.8)	(305.7)	(432.4)	(483.4)	(529.5)	(611.4)
	25	104,570	116,910	128,070	147,885	209,140	233,825	256,140	295,765
	(635)	(465.1)	(520.0)	(569.7)	(657.8)	(930.3)	(1040.1)	(1139.4)	(1315.6)

¹ See Section 3.1.8 for explanation on development of load values.

 $^{2\,}$ See Section 3.1.8 to convert design strength value to ASD value.

³ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

⁴ Apply spacing, edge distance, and concrete thickness factors in tables 42 - 55 as necessary to the above values. Compare to the steel values in table 81. The lesser of the values is to be used for the design.

⁵ Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.92.

For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above values by 0.78.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁶ Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85.

⁷ Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

⁸ Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: For sand-lightweight, λ_a = 0.51. For all-lightweight, λ_a = 0.45

⁹ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 84 - Hilti HIT-HY 200 adhesive factored resistance with concrete / bond failure for threaded rod in cracked concrete^{1,2,3,4,5,6,7,8,9}

Nominal			Tensio	on - N _r			Shea	ar - V _r	
anchor	Effective	f' = 20 MPa	f' = 25 MPa	f' _c = 30 MPa	f' = 20 MPa	f' = 20 MPa	f' _c = 25 MPa	f' _c = 30 MPa	f' _c = 20 MPa
diameter	embedment	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)
in.	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
	2-3/8	1,930	1,975	2,010	2,070	1,930	1,975	2,010	2,070
ļ	(60)	(8.6)	(8.8)	(8.9)	(9.2)	(8.6)	(8.8)	(8.9)	(9.2)
	3-3/8	2,745	2,805	2,855	2,940	5,485	5,610	5,710	5,880
3/8	(86)	(12.2)	(12.5)	(12.7)	(13.1)	(24.4)	(24.9)	(25.4)	(26.1)
,	4-1/2 (114)	3,655	3,740	3,810	3,920	7,315	7,480	7,615	7,840
ł	7-1/2	(16.3) 6,095	(16.6) 6,230	(16.9) 6,345	(17.4) 6,530	(32.5) 12,190	(33.3) 12,465	(33.9) 12,695	(34.9) 13,065
	(191)	(27.1)	(27.7)	(28.2)	(29.1)	(54.2)	(55.4)	(56.5)	(58.1)
	2-3/4	2,670	2,985	3,270	3,470	5,340	5,970	6,540	6,935
	(70)	(11.9)	(13.3)	(14.5)	(15.4)	(23.8)	(26.6)	(29.1)	(30.9)
	4-1/2	5,295	5,415	5,515	5,675	10,590	10,830	11,030	11,350
1/0	(114)	(23.6)	(24.1)	(24.5)	(25.2)	(47.1)	(48.2)	(49.1)	(50.5)
1/2	6	7,060	7,220	7,355	7,565	14,120	14,440	14,705	15,135
	(152)	(31.4)	(32.1)	(32.7)	(33.7)	(62.8)	(64.2)	(65.4)	(67.3)
	10	11,770	12,035	12,255	12,610	23,535	24,065	24,510	25,225
	(254)	(52.3)	(53.5)	(54.5)	(56.1)	(104.7)	(107.1)	(109.0)	(112.2)
	3-1/8 (79)	3,235 (14.4)	3,615 (16.1)	3,960 (17.6)	4,575 (20.4)	6,470 (28.8)	7,235 (32.2)	7,925 (35.2)	9,150 (40.7)
	5-5/8	7,810	8,720	8,880	9,140	15,625	17,445	17,765	18,285
	(143)	(34.8)	(38.8)	(39.5)	(40.7)	(69.5)	(77.6)	(79.0)	(81.3)
5/8	7-1/2	11,370	11,630	11,845	12,190	22,745	23,260	23,685	24,375
	(191)	(50.6)	(51.7)	(52.7)	(54.2)	(101.2)	(103.5)	(105.4)	(108.4)
	12-1/2	18,955	19,380	19,740	20,315	37,910	38,765	39,475	40,630
	(318)	(84.3)	(86.2)	(87.8)	(90.4)	(168.6)	(172.4)	(175.6)	(180.7)
	3-1/2	3,835	4,285	4,695	5,425	7,670	8,575	9,390	10,845
	(89)	(17.1)	(19.1)	(20.9)	(24.1)	(34.1)	(38.1)	(41.8)	(48.2)
	6-3/4	10,270	11,480	12,575 (55.9)	14,175	20,540 (91.4)	22,965 (102.1)	25,155 (111.9)	28,355 (126.1)
3/4	(171) 9	(45.7) 15,810	(51.1) 17,675	18,365	(63.1) 18,900	31,620	35,355	36,730	37,805
	(229)	(70.3)	(78.6)	(81.7)	(84.1)	(140.7)	(157.3)	(163.4)	(168.2)
	15	29,395	30,055	30,610	31,505	58,785	60,115	61,220	63,005
	(381)	(130.7)	(133.7)	(136.2)	(140.1)	(261.5)	(267.4)	(272.3)	(280.3)
	3-1/2	3,835	4,285	4,695	5,425	7,670	8,575	9,390	10,845
ļ	(89)	(17.1)	(19.1)	(20.9)	(24.1)	(34.1)	(38.1)	(41.8)	(48.2)
	7-7/8	12,940	14,470	15,850	18,300	25,880	28,935	31,700	36,605
7/8	(200)	(57.6)	(64.4)	(70.5)	(81.4)	(115.1)	(128.7)	(141.0)	(162.8)
, -	10-1/2	19,925	22,275	24,400	26,340	39,850	44,550	48,805	52,680
}	(267) 17-1/2	(88.6) 40,960	(99.1) 41,885	(108.5) 42,655	(117.2) 43,900	(177.3) 81,920	(198.2) 83,770	(217.1) 85,310	(234.3) 87,800
	(445)	(182.2)	(186.3)	(189.7)	(195.3)	(364.4)	(372.6)	(379.5)	(390.6)
	4	4,685	5,240	5,740	6,625	9,370	10,475	11,475	13,250
	(102)	(20.8)	(23.3)	(25.5)	(29.5)	(41.7)	(46.6)	(51.0)	(58.9)
İ	9	15,810	17,675	19,365	22,360	31,620	35,355	38,730	44,720
1	(229)	(70.3)	(78.6)	(86.1)	(99.5)	(140.7)	(157.3)	(172.3)	(198.9)
'	12	24,340	27,215	29,815	34,425	48,685	54,430	59,625	68,850
	(305)	(108.3)	(121.1)	(132.6)	(153.1)	(216.6)	(242.1)	(265.2)	(306.3)
	20	52,375	56,190	57,225	58,895	104,755	112,380	114,450	117,790 (524.0)
	(508) 5	(233.0) 6,545	(249.9) 7,320	(254.5) 8,020	(262.0) 9,260	(466.0) 13,095	(499.9) 14,640	(509.1) 16,035	18,520
	5 (127)	(29.1)	(32.6)	(35.7)	(41.2)	(58.2)	(65.1)	(71.3)	(82.4)
	11-1/4	22,095	24,705	27,060	31,250	44,195	49,410	54,125	62,500
	(286)	(98.3)	(109.9)	(120.4)	(139.0)	(196.6)	(219.8)	(240.8)	(278.0)
1-1/4	15	34,020	38,035	41,665	48,110	68,040	76,070	83,330	96,220
İ	(381)	(151.3)	(169.2)	(185.3)	(214.0)	(302.7)	(338.4)	(370.7)	(428.0)
	25	73,200	81,840	89,650	95,845	146,395	163,675	179,300	191,685
	(635)	(325.6)	(364.0)	(398.8)	(426.3)	(651.2)	(728.1)	(797.6)	(852.7)

¹ See Section 3.1.8 for explanation on development of load values.

For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.92. For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above values by 0.78.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

 $^{2\,}$ See Section 3.1.8 to convert design strength value to ASD value.

³ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

⁴ Apply spacing, edge distance, and concrete thickness factors in tables 42 - 55 as necessary to the above values. Compare to the steel values in table 81. The lesser of the values is to be used for the design.

⁵ Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

⁶ Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85.

⁷ Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

⁸ Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by la as follows: For sand-lightweight, λ_a = 0.51. For all-lightweight, λ_a = 0.45.

⁹ Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors: 3/8-in diameter - $\alpha_{\text{seis}} = 0.66$, 1/2-in, 5/8-in, and 1-1/4-in diameter - $\alpha_{\text{seis}} = 0.74$, 3/4-in and 7/8-in diameter - $\alpha_{\text{seis}} = 0.75$ See section 3.1.8 for additional information on seismic applications.

HIT-HY 200 Adhesive with Hilti HIS-N and HIS-RN internally threaded inserts

Table 85 - Steel factored resistance for steel bolt/cap screw for Hilti HIS-N and HIS-RN internally threaded inserts 1.2.3

		ASTM A193 B7		ASTM A193 Grade B8M Stainless Steel					
Thread size	Tensile ⁴ N _{sar} Ib (kN)	Shear ⁵ V _{sar} lb (kN)	Seismic Shear ⁶ V _{sar,eq} lb (kN)	Tensile ⁴ N _{sar} lb (kN)	Shear ⁵ V _{sar} Ib (kN)	Seismic Shear ⁶ V _{sar,eq}			
3/8-16 UNC	5,765	3,215	2,250	5,070	2,825	1,975			
	(25.6)	(14.3)	(10.0)	(22.6)	(12.6)	(8.8)			
1/2-13 UNC	9,635	5,880	4,115	9,290	5,175	3,620			
1/2-13 UNC	(42.9)	(26.2)	(18.3)	(41.3)	(23.0)	(16.1)			
E/0 11 LINC	16,020	9,365	6,555	14,790	8,240	5,770			
5/8-11 UNC	(71.3)	(41.7)	(29.2)	(65.8)	(36.7)	(25.7)			
3/4-10 UNC	16,280	13,860	9,700	21,895	12,195	8,535			
	(72.4)	(61.7)	(43.1)	(97.4)	(54.2)	(38.0)			

- 1 See Section 3.1.8 to convert design strength value to ASD value.
- 2 Hilti HIS-N and HIS-RN inserts with steel bolts are considered brittle steel elements.
- 3 Table values are the lesser of steel failure in the HIS-N insert or inserted steel bolt.
- 4 Tensile = $A_{se,N} \varphi_s f_{uta} R$ as noted in CSA A23.3-14 Annex D.
- 5 Shear = $A_{se,V} \Phi_s 0.60 f_{uta} R$ as noted in CSA A23.3-14 Annex D. For 3/8-in diameter insert, shear = $A_{se,V} \Phi_s 0.50 f_{uta} R$.
- 6 Seismic Shear = $\alpha_{\text{V,seis}}$ V $_{\text{sar}}$: Reduction factor for seismic shear only. See section 3.1.8 for additional information on seismic applications.

Table 86 - Hilti HIT-HY 200 design information with Hilti HIS-N and HIS-RN internally threaded inserts in hammer drilled holes in accordance with CSA A23.3-14 Annex D¹

				Nominal	bolt/cap s	screw diar	neter (in.)	Ref
Design	parameter	Symbol	Units	3/8	1/2	5/8	3/4	A23.3-14
HIS ins	ert outside diameter	D	mm	16.5	20.5	25.4	27.6	
Effectiv	re embedment ²	h _{ef}	mm	110	125	170	205	
Minimu	m concrete thickness ²	h _{min}	mm	150	170	230	270	
Critical	edge distance	C _{ac}	-		2	h _{ef}		
Minimu	m edge distance	C _{min}	mm	83	102	127	140	
Minimu	m anchor spacing	S _{min}	mm	83	102	127	140	
Coeff.	or factored concrete breakout resistance, uncracked concrete	k _{c,uncr} ³	-		1	0		D.6.2.2
Coeff.	or factored concrete breakout resistance, cracked concrete	k _{c,cr} ³	-			7		D.6.2.2
Concre	te material resistance factor	Фс	-		0.	65		8.4.2
Resista	nce modification factor for tension and shear, concrete failure modes, Condition B4	R _{conc}	-		1.	00		D.5.3 (c)
ηρ 9 Α ⁵	Characteristic pullout resistance in cracked concrete ⁶	$ au_{cr}$	psi (MPa)	870 (6.0)	890 (6.1)	910 (6.3)	920 (6.3)	D.6.5.2
Temp range A ⁵	Characteristic pullout resistance in uncracked concrete ⁶	$ au_{uncr}$	psi (MPa)	1,950 (13.4)	1,950 (13.4)	1,950 (13.4)	1,950 (13.4)	D.6.5.2
np e B ⁵	Characteristic pullout resistance in cracked concrete ⁶	$\tau_{\rm cr}$	psi (MPa)	870 (6.0)	890 (6.1)	910 (6.3)	92 (0.6)	D.6.5.2
Temp range B ⁵	Characteristic pullout resistance in uncracked concrete ⁶	$ au_{\text{uncr}}$	psi (MPa)	1,950 (13.4)	1,950 (13.4)	1,950 (13.4)	1,950 (13.4)	D.6.5.2
Temp range C ⁵	Characteristic pullout resistance in cracked concrete ⁶	$\tau_{\rm cr}$	psi (MPa)	715 (4.9)	730 (5.0)	750 (5.2)	755 (5.2)	D.6.5.2
Ter	Characteristic pullout resistance in uncracked concrete ⁶	$ au_{\text{uncr}}$	psi (MPa)	1,600 (11.0)	1,600 (11.0)	1,600 (11.0)	1,600 (11.0)	D.6.5.2
Reduct	ion for seismic tension	α _{N.seis}	-		0.	92		
ssible ation tions	Resistance modification factor tension and shear, pullout failure dry concrete	Anch cat	-		1.	00		D.5.3 (c)
Permissible installation conditions	Resistance modification factor tension and shear, pullout failure water-saturated concrete	Anch cat	-			.0		D.5.3 (c)

- 1 Design information in this table is taken from ELC-3187, dated April 2019, tables 19 and 20, for use with CSA A23.3-14 Annex D.
- 2 See figure 13 of this section.
- 3 For all design cases, ψ_{cN} = 1.0. The appropriate coefficient for breakout resistance for cracked concrete (k_{c,unct}) or uncracked concrete (k_{c,unct}) must be used.
- 4 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.
- 5 Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).
 Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C).
 Temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C).
 Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- 6 Bond strength values corresponding to concrete compressive strength f'_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'_c /2,500)^{0.1} [for SI: (f'_c /17.2)^{0.1}].

93

Table 87 - Hilti HIT-HY 200 adhesive factored resistance with concrete/bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete^{1,2,3,4,5,6,7,8,9}

			Tensio	on - N _r		Shear - V _r						
Thread size	Effective embedment in. (mm)	f' = 20 MPa (2,900psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)			
2/0 16 LING	4-3/8	7,540	8,430	9,235	10,660	15,080	16,860	18,470	21,325			
3/8-16 UNC	(110)	(33.5)	(37.5)	(41.1)	(47.4)	(67.1)	(75.0)	(82.1)	(94.9)			
1/2-13 UNC	5	9,135	10,210	11,185	12,915	18,265	20,420	22,370	25,830			
1/2-13 UNC	(125)	(40.6)	(45.4)	(49.8)	(57.5)	(81.3)	(90.8)	(99.5)	(114.9)			
5/8-11 UNC	6-3/4	14,485	16,195	17,740	20,485	28,970	32,390	35,480	40,970			
5/6-11 UNC	(170)	(64.4)	(72.0)	(78.9)	(91.1)	(128.9)	(144.1)	(157.8)	(182.2)			
3/4-10 UNC	8-1/8	19,180	21,445	23,490	27,125	38,360	42,890	46,985	54,255			
3/4-10 UNC	(205)	(85.3)	(95.4)	(104.5)	(120.7)	(170.6)	(190.8)	(209.0)	(241.3)			

Table 88 - Hilti HIT-HY 200 adhesive factored resistance with concrete/bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete^{1,2,3,4,5,6,7,8,9}

			Tensio	on - N _r		Shear - V,					
Thread size	Effective embedment in. (mm)	f' = 20 MPa (2,900psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)		
3/8-16 UNC	4-3/8	5,235	5,595	5,910	6,445	10,470	11,190	11,820	12,885		
3/6-16 UNC	(110)	(23.3)	(24.9)	(26.3)	(28.7)	(46.6)	(49.8)	(52.6)	(57.3)		
1/2-13 UNC	5	6,395	7,150	7,830	9,040	12,785	14,295	15,660	18,080		
1/2-13 UNC	(125)	(28.4)	(31.8)	(34.8)	(40.2)	(56.9)	(63.6)	(69.7)	(80.4)		
5/8-11 UNC	6-3/4	10,140	11,335	12,420	14,340	20,280	22,675	24,835	28,680		
5/6-11 UNC	(170)	(45.1)	(50.4)	(55.2)	(63.8)	(90.2)	(100.9)	(110.5)	(127.6)		
2/4 10 LINC	8-1/8	13,425	15,010	16,445	18,990	26,855	30,025	32,890	37,975		
3/4-10 UNC	(205)	(59.7)	(66.8)	(73.1)	(84.5)	(119.5)	(133.5)	(146.3)	(168.9)		

- 1 See Section 3.1.8 for explanation on development of load values.
- 2 See Section 3.1.8 to convert design strength value to ASD value.
- 3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- 4 Apply spacing, edge distance, and concrete thickness factors in tables 60 61 as necessary to the above values. Compare to the steel values in table 85. The lesser of the values is to be used for the design.
- 5 Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above values by 0.92. For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above values by 0.78. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- 6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength value by 0.85.
- 7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
- 8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ, as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.
- 9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors:

For all insert diameters - $\alpha_{\rm seis}$ = 0.69 See section 3.1.8 for additional information on seismic applications.

POST-INSTALLED REBAR DESIGN IN CONCRETE PER ACI 318

Development and splicing of post-installed reinforcement

Calculations for post-installed rebar for typical development lengths may be done according to ACI 318-14 Chapter 25 (formerly ACI 318-11 Chapter 12) and CSA A23.3-14 Chapter 12 for adhesive anchors tested and approved in accordance with AC 308. This section contains tables for the data provided in ICC Evaluation Services ESR-3187. Refer to section 3.1.14 and the Hilti North America Post-Installed Reinforcing Bar Guide for the design method.

Table 89 - Calculated tension development and Class B splice lengths for Grade 60 bars in walls, slabs, columns, and footings per ACI 318-14 Chapter 25 for Hilti HIT-HY 200 - SDC A and B only^{3,4,5,6,7}

	Sys	tem				f'c = 2,	500 psi	f'c = 3,	000 psi	f' c = 4,	000 psi	f'c = 6,	000 psi
Rebar size	HIT-HY 200-A	HIT-HY 200-R	$\frac{c_{b} + K_{tr}}{d_{b}}$	Minimum edge dist. in.1	Minimum spacing in.2	$\ell_{_{ m d}}$ in.	Class B splice in.	$\ell_{_{ m d}}$ in.	Class B splice in.	$\ell_{_{ m d}}$ in.	Class B splice in.	$\ell_{_{ m d}}$ in.	Class B splice in.
#3	0	0		2-1/4	2	12	14	12	13	12	12	12	12
#4	0	0		2-3/4	2-1/2	14	19	13	17	12	15	12	12
#5	0	0		3	3-1/4	18	23	16	21	14	18	12	15
#6		0	2.5	3-3/4	3-3/4	22	28	20	26	17	22	14	18
#7		0	2.5	4-1/2	4-1/2	32	41	29	37	25	32	20	26
#8		0		5	5	36	47	33	43	28	37	23	30
#9		0		5-1/4	5-3/4	41	53	37	48	32	42	26	34
#10		0		5-3/4	6-1/2	46	59	42	54	36	47	30	38

[•] Applicable for use with special installation provisions and installation temperature restrictions to account for short gel time with deep embedment depth. See the Instruction For Use (IFU), packaged with the product for special installation parameters.

[■] Not recommended due to limited gel time of adhesive.

¹ Edge distances are determined using the minimum cover specified by ESR-3187 with an additional 6% of the development length per suggestions for drilling without an aid per Hilti Post-Installed Reinforcing Bar Guide Section 3.3. Smaller edge distances may be possible, for which development and splice lengths may need to be recalculated. For further information on required cover see ACI 318-14, Sec. 20.6.1.3; see Sec. 2.2 for determination of c_b.

² Spacing values represent those producing c_b =5 d_b rounded up to the nearest 1/4 in. Smaller spacing values may be possible, for which development and splice lengths may need to be recalculated. For further information on required spacing see ACI 318-14 Sec. 25.2; see Sec. 2.2 for determination of c_b.

³ ψ, = 1.0 See ACI 318-14, Sec. 25.4.2.4.

⁴ ψ_e = 1.0 for non-epoxy coated bars. See ACI 318-14, Sec. 25.4.2.4.

⁵ ψ_s = 0.8 for #6 bars and smaller bars, 1.0 for #7 and larger bars. See ACI 318-14, Sec. 25.4.2.4.

⁶ Values are for normal weight concrete. For sand-lightweight concrete, multiply development and splice lengths by 1.18, for all-lightweight concrete multiply development and splice lengths by 1.33. See ACI 318-14 Sec. 19.2.4.

⁷ Development and splice length values are for static design. Seismic design development and splice lengths can be found in ACI 318-14 18.8.5 for special moment frames and ACI 318-14 18.10.2.3 for special structural walls. For further information about reinforcement in seismic design, see ACI 318-14 Ch. 18.

⁸ Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples.

Table 90 - Suggested embedment, edge distance, and spacing (see figure below) to develop 125% of f_y in Grade 60 bars based on ACI 318-14 Chapter 17 - SDC A and B only 1,2,3,4,5,6,7

		f'c = 2,	500 psi			f'c = 3,	000 psi			f'c = 4,	000 psi		f' _c = 6,000 psi			
	Effective	U	mum e dist 	Min.	Effective	Minimum edge dist c _{a,min} in.		Min.	Effective	edge	mum e dist 	Min.	Effective	edge	mum e dist ,,min 1.	Min.
Rebar size	embed. h _{ef} in.	Cond.	Cond.	spacing s _{min} in.	embed. h _{ef} in.	Cond.	Cond.	spacing s _{min} in.	embed. h _{ef} in.	Cond.	Cond.	spacing s _{min} in.	embed. h _{ef} in.	Cond.	Cond.	spacing s _{min} in.
#3	7	18	8	15	7	18	7	14	7	18	7	13	7	17	6	11
#4	10	25	11	22	10	25	11	21	9	24	10	19	9	24	9	17
#5	12	31	15	29	12	31	14	28	12	30	13	25	11	29	11	22
#6	14	37	19	37	14	36	18	35	14	36	16	32	13	35	14	28
#7	17	43	23	45	16	42	22	43	16	41	20	39	15	40	17	34
#8	19	49	27	54	19	49	26	51	18	48	23	47	18	47	21	41
#9	21	55	32	63	21	54	30	60	20	54	27	54	20	52	24	48
#10	25	65	37	74	24	62			23	60	32	64	22	59	28	56

¹ For additional information see May-June 2013 issue of the ACI Structural Journal, "Recommended Procedures for Development and Splicing of Post-Installed Bonded Reinforcing Bars in Concrete Structures" by Charney, Pal and Silva.

⁷ Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

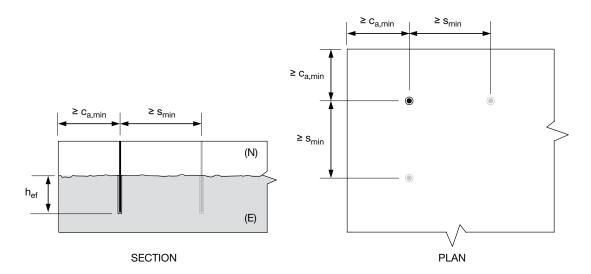


Illustration of Table 90 dimensions

² h_{et} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Additional reductions per ACI 318-14, 17.3.1.2 for sustained loading conditions are not included and as such these suggested embedments are not intended for sustained tension load applications. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the unbolded and bolded tabulated hef values by 0.80 and 0.86, respectively. Reduction factors for non-sustained loading and no bar overstrength may be combined.

³ c_a and s are the minimum edge distance and bar spacing (from bar centerline) associated with the tabulated embedments. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."

⁴ Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.

⁵ Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187 Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.

⁶ Values are for normal weight concrete. For lightweight concrete contact Hilti.

Table 91 - Suggested embedment and edge distance (see figure below) based on ACI 318-14 Chapter 17 to develop 125% of f, in Grade 60 wall/column starter bars in a linear array with bar spacing = 24 inches - SDC A and B only^{1,2,3,4,5,6}

		f'c = 2,500 psi				f' _c = 3,000 psi			f' _c = 4,000 psi			$f_{c} = 6,000 \text{ psi}$		
			Mini edge	mum e dist			mum e dist		Minii edge	mum e dist		Minir edge		
	Linear spacing	Effective embed.	C _a	min 1.	Effective embed	Effective embed.		Effective embed.	c _{a,min} in.		Effective embed.	C _{a,min} in.		
Rebar size	s in.	h _{ef} in.	Cond.	Cond. II	h _{ef} in.	Cond.	Cond. II	h _{ef} in.	Cond.	Cond. II	h _{ef} in.	Cond.	Cond. II	
#3		7	18	8	7	18	7	7	18	7	7	17	6	
#4		10	25	12	10	25	11	9	24	10	9	24	9	
#5	24	13	33	19	12	31	17	12	30	15	11	29	12	
#6		21	55	32	19	49	28	15	40	23	13	35	18	
#7		32	83	47	28	75	42	23	62	35	18	48	26	

¹ h_{ef} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated h_{ef} values by 0.86.

- 2 c_a is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 24 in. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
- 3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
- 4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187 Tables 12 and 13 assuming dry concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.
- 5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
- 6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for detailed explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

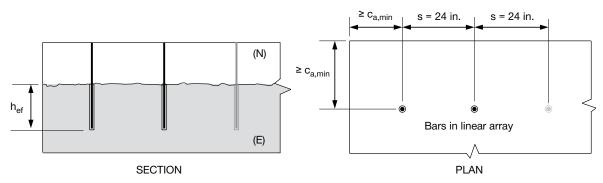


Illustration of Table 91 dimensions

Table 92 - Suggested embedment and edge distance (see figure below) based on ACI 318-14 Chapter 17 to develop 125% of f₁ in Grade 60 wall/column starter bars in a linear array with bar spacing = 18 inches - SDC A and B only^{1,2,3,4,5,6}

		f	c = 2,500 p	si	f	' _c = 3,000 p	si	f	c = 4,000 ps	si	f' _c = 6,000 psi		
	Linear spacing	Effective embed.	edge	Minimum edge dist c _{a,min} in.		Minimum edge dist c _{a,min} in.		Effective embed.	edge	mum e dist ^{min} 1.	Effective embed.	Minimum edge dist c _{a.min} in.	
Rebar size	s in.	h _{ef} in.	Cond.	Cond. II	embed. h _{ef} in.	Cond.	Cond.	h _{ef} in.	Cond.	Cond. II	h _{ef} in.	Cond.	Cond. II
#3		7	18	8	7	18	7	7	18	7	7	17	6
#4	18	10	25 14		10	25	13	9	24	12	9	24	10
#5]	18	47	27	16	41	24	13	34	19	11	29	15

¹ h_{ef} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated h_{ef} values by 0.86.

- 3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
- 4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187, Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.
- 5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
- 6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for detailed explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

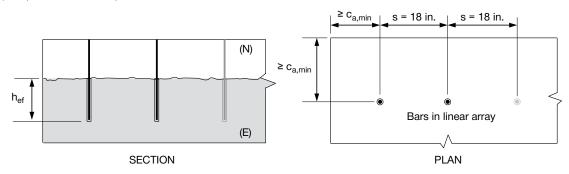


Illustration of Table 92 dimensions

² c_a is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 18 in. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."

Table 93 - Suggested embedment and edge distance (see figure below) based on ACI 318-14 Chapter 17 to develop 125% of f, in Grade 60 wall/column starter bars in a linear array with bar spacing = 12 inches - SDC A and B only^{1,2,3,4,5,6}

У		•									<u> </u>			
		f	' _c = 2,500 p	si	f	_c = 3,000 ps	si	f	c = 4,000 p	si	f c = 6,000 psi			
		Minimum edge dist			edge				dist		Minir edge	dist		
	Linear spacing	Effective embed.	C _a	min 1.	Effective embed.	c _{a,min} in.		Effective embed.	C _{a.} ir	min 1.	Effective embed.	C _{a,} ir	min 1.	
Rebar size	s in.	h _{ef} in.	Cond.	Cond.	h _{ef} in.	Cond.	Cond. II	h _{ef} in.	Cond.	Cond.	h _{ef} in.	Cond.	Cond.	
#3	12	7	18	10	7	18	9	7	18	8	7	17	7	
#4	12	_	-	-	13	35	20	11	29	16	9	24	13	

- 1 h_{ef} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated h_{ef} values by 0.86.
- 2 c is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 12 in. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
- 3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
- 4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187, Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.
- 5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
- 6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

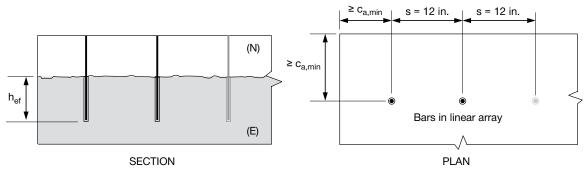


Illustration of Table 93 dimensions

Table 94 - Calculated tension development and splice lengths for Canadian 400 MPa bars in walls, slabs, columns, and footings per CSA A23.3-14 for Hilti HIT-HY 200 - non-seismic design only^{3,4,5,6,7,8}

System		tem				f'c = 2	0 MPa	f'c = 2	5 MPa	f'c = 3	0 MPa	f'c = 4	0 MPa
Rebar size	НІТ-НҮ 200-А	HIT-HY 200-R	d _{cs} + K _{tr}	Minimum edge dist. mm ¹	Minimum spacing mm ²	$\ell_{_{ m d}}$ mm	Class B splice mm	ℓ _d mm	Class B splice mm	ℓ _d mm	Class B splice mm	ℓ _d mm	Class B splice mm
10M	0	0		60	50	300	380	300	340	300	310	300	300
15M	0	0		70	75	410	540	370	480	340	440	300	380
20M	0	0	2.5d _b	80	100	510	660	450	590	410	540	360	460
25M		0		120	125	820	1,060	730	950	670	870	580	750
30M		0		130	150	960	1,250	860	1,120	790	1,020	680	890

- Applicable for use with special installation provisions and installation temperature restrictions to account for short gel time with deep embedment depth. See Instructions for Use (IFU) for special installation parameters.
- Not recommended due to limited gel time of adhesive.
- 1 Edge distances are determined using the minimum cover specified by ESR-3187 with an additional 6% of the development length per suggestions for drilling without an aid per Hilti Post-Installed Reinforcing Bar Guide Section 3.3. Smaller edge distances may be possible, for which development and splice lengths may need to be recalculated. For further information on required cover see CSA A23.1-14 Table 17; see Sec. 3.2 for determination of d_{ss}.
- 2 Spacing values represent those producing c_b 5d_b. Smaller spacing values may be possible, for which development and splice lengths may need to be recalculated. For further information on required spacing see CSA A23.1 Sec. 6.6.5.2; see Sec. 3.2 for determination of d_c.
- 3 k₁ and k₂ as defined by CSA A23.3-14 12.2.4 (a) and (b), are taken as 1.0 for post-installed reinforcing bars. For additional information see May-June 2013 issue of the ACI Structural Journal, "Recommended Procedures for Development and Splicing of Post-Installed Bonded Reinforcing Bars in Concrete Structures" by Charney, Pal and Silva.
- 4 k_a = 0.8 for 20M bars and smaller bars, 1.0 for 25M and larger bars. See CSA A23.3-14 12.2.4 (d).
- 5 K is assumed to equal zero.
- 6 Values are for normal weight concrete. For lightweight concrete, multiply development and splice lengths by 1.3.
- 7 Development and splice length values are for static design. For tension development and splice lengths of bars in joints, see CSA A23.3-14 21.3.3.5. For further information about reinforcement in seismic design, see CSA A23.3-14 Ch. 21.
- 8 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples.

Table 95 - Suggested embedment, edge distance, and spacing (see figure below) to develop 125% of f, in Canadian 400 MPa bars based on CSA A23.3-14 Annex D - non-seismic design only 1,2,3,4,5,6,7

	f'c = 20 MPa				f' _c = 25 MPa				f'c = 30 MPa				f'c = 40 MPa			
	Effective	edge	mum e dist ^{,min} m		Effective	_	mum e dist ^{min} m		Effective	edge	mum e dist ^{min} m		Effective		mum e dist ^{min} m	Min.
Rebar size	embed. h _{ef} mm	Cond.	Cond.	spacing s _{min} mm	embed. h _{ef} mm	Cond.	Cond.	spacing s _{min} mm	embed. h _{ef} mm	Cond.	Cond.	spacing s _{min} mm	embed. h _{ef} mm	Cond.	Cond.	spacing s _{min} mm
10M	200	520	220	440	200	510	200	400	200	510	190	380	190	500	180	350
15M	280	740	350	690	280	730	320	640	270	720	300	600	270	710	280	550
20M	350	910	450	900	340	890	420	840	330	880	400	790	320	870	360	720
25M	450	1,170	630	1,260	440	1,150	590	1,170	430	1,140	560	1,110	420	1,120	500	1,000
30M	530	1,390	790	1,580	520	1,360	740	1,470	510	1,350	690	1,380	490	1,320	630	1,260

- 1 For additional information see May-June 2013 issue of the ACI Structural Journal, "Recommended Procedures for Development and Splicing of Post-Installed Bonded Reinforcing Bars in Concrete Structures" by Charney, Pal and Silva.
- 2 h_{at} is the calculated bar embedment uncracked based on bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Additional reductions per ACI 318-14 17.3.1.2 for sustained loading conditions are not included and as such these suggested embedments are not intended for sustained tension load applications. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the unbolded and bolded tabulated h_{et} values by 0.80 and 0.86, respectively.
- 3 c and s are the minimum edge distance and bar spacing (from bar centerline) associated with the tabulated embedments. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
- 4 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
- 5 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187 Tables 20 and 21 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.
- 6 Values are for normal weight concrete. For lightweight concrete contact Hilti.
- 7 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

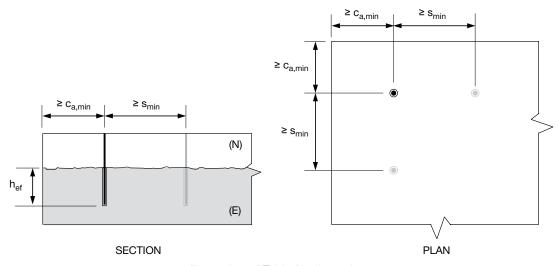


Illustration of Table 95 dimensions

Table 96 - Suggested embedment and edge distance (see figure below) based on CSA A23.3-14 Annex D to develop 125% of f_y in Canadian 400 MPa wall/column starter bars in a linear array with bar spacing = 600 millimeters - non-seismic design only^{1,2,3,4,5,6}

		f' _c = 20 MPa			f'c = 25 MPa			f'c = 30 MPa			f'c = 40 MPa		
	Effective Linear embed.		Minimum edge dist Effective company c		Effective Minimi edge control of the minimi edge control of the minimi embed.		dist	Effective embed.	edge	Minimum edge dist ^C _{a,min} mm			mum e dist m
Rebar size	spacing s	h _{ef} mm	Cond.	Cond. II	h _{ef} mm	Cond.	Cond. II	h _{ef} mm	Cond.	Cond. II	embed. h _{ef} mm	Cond.	Cond. II
10M		200	520	220	200	510	200	200	510	190	190	500	180
15M	600	280	740	420	280	730	350	270	720	300	270	710	280
20M		510	1,340	760	430	1,150	650	380	1,010	570	320	870	460

- 1 h_{ef} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated h_{ef} values by 0.86.
- 2 c_a is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 600 mm. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."
- 3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
- 4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187, Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.
- 5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
- 6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

Illustration of Table 96 dimensions

Table 97 - Suggested embedment and edge distance (see figure below) based on CSA A23.3-14 Annex D to develop 125% of f_y in Canadian 400 MPa wall/column starter bars in a linear array with bar spacing = 450 millimeters - non-seismic design only^{1,2,3,4,5,6}

			j	f' _c = 20 MPa	a	f'c = 25 MPa			f'c = 30 MPa			f'c = 40 MPa		
		Linear spacing	Effective embed.	edge	mum e dist ^{min} m	Effective embed.	edge	mum e dist ^{min} m	Effective embed.	edge	mum e dist ^{min} m	Effective embed.	Minir edge C _{a,} m	dist
	ebar size	s s mm	h _{ef} mm	Cond.	Cond.	h _{ef} mm	Cond.	Cond. II	h _{ef} mm	Cond.	Cond.	h _{ef} mm	Cond.	Cond.
1	0M	450 —	200	520	220	200	510	200	200	510	190	190	500	180
1:	5M	450	390	1,040	590	340	890	500	300	790	440	270	710	360

¹ h_{ef} is the calculated bar embedment based on uncracked bond and concrete breakout strengths using equations in section 3.1.14 to develop 125% of nominal bar yield. Shaded embedment values exceed 20 bar diameters. For non-tabulated rebar sizes, design per development length provisions is recommended. The particular assumptions used for the application of anchor theory to bar development (e.g., bar yield and bond strength values) are a matter of engineering judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated h_{ef} values by 0.86.

- 3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.
- 4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187 Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.
- 5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
- 6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

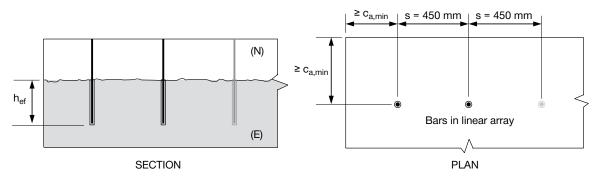


Illustration of Table 97 dimensions

² c_a is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 450 mm. Refer to sec. 3.1.14 for applicability of edge distance "Condition I" and "Condition II."

Linear

Effective

Table 98 - Suggested embedment and edge distance (see figure below) based on CSA A23.3-14 Annex D to develop 125% of f_y in Canadian 400 MPa wall/column starter bars in a linear array with bar spacing = 300 millimeters - non-seismic design only^{1,2,3,4,5,6}

 $f'_{c} = 25 \text{ MPa}$

Effective

 $f'_{0} = 40 \text{ MPa}$

Effective

Minimum

edge dist

Rebar size	spacing s mm	embed. h _{ef} mm	Cond.	Cond.	embed. h _{ef} mm	Cond.	Cond.	embed. h _{ef} mm	Cond.	Cond.	embed. h _{ef} mm	Cond.	Cond.
10M	300	240	610	350	200	520	300	200	510	260	190	500	210
•	Shaded em	bedment va	lues exceed	d 20 bar dia	meters. For	non-tabulat	ed rebar siz	ngths using e es, design p .g., bar yield	er developn	nent length	provisions is	recommen	ded.

Minimum

edge dist

c_{a,mir}

 $f_{c}^{1} = 30 \text{ MPa}$

Effective

Minimum

edge dist

c_{a,min}

- judgment and will in part depend on the specific circumstances of the design. For embedments corresponding to nominal yield (i.e., no overstrength) multiply the tabulated hef values by 0.86.

 2 c is the minimum edge distance (from bar centerline) associated with the tabulated embedments and s = 300 mm. Refer to sec. 3.1.14 for applicability of edge distance "Condition II" and "Condition II."
- 3 Applicable for hammer-drilled holes. For rock-drilled and core-drilled holes, contact Hilti.

 $f_{c}^{1} = 20 \text{ MPa}$

Minimum

edge dist

- 4 Values determined with bond stresses, k-factors and strength reduction factors taken from ESR-3187 Tables 12 and 13 assuming dry, uncracked concrete conditions where concrete temperatures will not exceed a maximum short-term temperature of 130°F (55°C) and long-term temperature of 110°F (43°C). Bond stresses are for static (non-seismic) loading conditions.
- 5 Values are for normal weight concrete. For lightweight concrete contact Hilti.
- 6 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples. See Hilti Instructions for Use (IFU) for specific installation requirements.

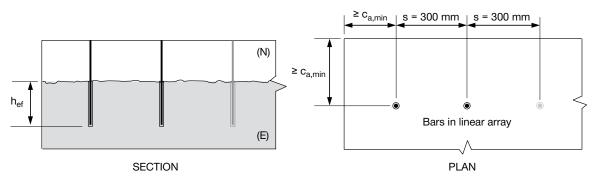
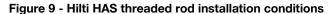



Illustration of Table 98 dimensions

DESIGN DATA IN MASONRY

Hilti HIT-HY 200 adhesive in grout-filled CMU with Hilti HAS threaded rod, Deformed Reinforcing Bar (Rebar), and Hilti HIT-Z(-R) anchor rods

Permissible Base Materials

Grout-filled concrete masonry

Permissible drilling method

Hammer drilling with carbide tipped drill bit

Hilti TE-CD or TE-YD Hollow Drill Bit

Table 99 - Hilti HIT-HY 200 allowable adhesive bond tension loads for threaded rods, HIT-Z(-R) anchor rods, and reinforcing bars in the face of grout-filled concrete masonry walls^{1,2,3,4,5,6,7,8}

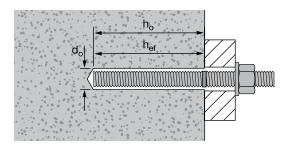
Nominal					Spacing	g ⁹		Edge distance	10	
anchor diameter in.	Rebar Size	Effective embedment in. (mm) ¹¹	Tension lb (kN)	Critical s _{cr} in. (mm)	Minimum s _{min} in. (mm)	Load Reduction Factor @ s _{min} ^{6,12}	Critical c _{cr} in. (mm)	Minimum c _{min} in. (mm)	Load Reduction Factor @ c _{min} ¹²	
0./0	No 2	3 3/8	960	13.5		0.60	12		0.50	
3/8	No. 3	(86)	(4.3)	(343)		0.60	(305)		0.58	
1/2	No. 4	4 1/2	1,520	18		0.60	20		0.70	
1/2	No. 4	(114)	(6.8)	(457)	4	0.60	(508)	4	0.70	
E /0	No E	5 5/8	1,810	22.5	(102)	0.50	20	(102)	0.00	
5/8	No. 5	(143)	(8.1)	(572)		0.50	(508)		0.82	
0/4	No 6	6 3/4	2,215	27		0.50	20		0.60	
3/4	No. 6	(171)	(9.9)	(686)		0.50	(508)		0.68	

Table 100 - Hilti HIT-HY 200 allowable adhesive bond shear loads for threaded rods, HIT-Z(-R) anchor rods, and reinforcing bars in the face of grout-filled concrete masonry walls 1,2,3,4,5,6,7,8

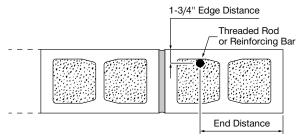
Nominal					Spacin	ıg ⁹			Edge distance ¹⁰	
anchor	Rebar	Effective embedment	Shear	Critical	Minimum	Load Reduction	Critical	Minimum	Load Reduction	Factor @ c _{min} ¹²
in.	Size	in. (mm) ¹¹	lb (kN)	s _{cr} in. (mm)	in. (mm)	Factor @ s _{min} ^{6,12}	c _{cr} in. (mm)	in. (mm)	Load ⊥ to edge	Load II edge
0./0	No 2	3 3/8	825	13.5		0.56	12		0.60	0.72
3/0	3/8 No. 3	(86)	(3.7)	(343)		0.56	(305)		0.60	0.72
1/2 No. 4	No. 4 1/2		1,240	18		0.50	12		0.44	0.05
	NO. 4	(114)	(5.5)	(457)	4	0.50	(305)	4	0.44	0.85
F (O	N- F	5 5/8	2,120	22.5	(102)	0.50	20	(102)	0.00	0.71
5/8 N	No. 5	(143)	(9.4)	(572)		0.50	(508)		0.22	0.71
0./4	N- C	6 3/4	2,480	27		0.50	20		0.10	0.71
3/4	No. 6	(171)	(11.0)	(686)		0.50	(508)		0.19	0.71

¹ All values are for anchors installed in fully grouted concrete masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units shall be lightweight, medium-weight or heavy-weight conforming to ASTM C90. Allowable loads are calculated using a safety factor of 5.

- 2 Anchors may be installed in any location in the face of the masonry wall including cell, web, and mortar joints. Anchors are limited to one per masonry cell.
- 3 Linear interpolation of load values between minimum spacing (s_{min}) and critical spacing (s_{cr}) and between minimum edge distance (c_{min}) and critical edge distance (c_{cr}) is permitted.
- 4 Concrete masonry thickness must be equal to or greater than 1.5 times the anchor embedment depth. EXCEPTION: the 5/8-inch- and the 3/4-inch diameter anchors (No. 5 and No. 6 bars) may be installed in minimum nominally 8-inch thick concrete masonry.
- 5 When using the basic load combinations in accordance with IBC Section 1605.3.1, tabulated allowable loads must not be increased for seismic or wind loading When using the alternative basic load combinations in IBC Section 1605.3.2 that include seismic or wind loads, tabulated allowable loads may be increased by 33-1/3 percent, or the alternative basic load combinations may be reduced by a factor of 0.75.
- 6 Allowable loads must be the lesser of the adjusted masonry or bond tabulated values and the steel values given in tables 102 and 103.
- 7 Tabulated allowable loads shall be adjusted for increased base material temperatures in accordance with figure 14.
- For combined loading: $(T_{applied} / T_{allowable}) + (V_{applied} / V_{allowable}) \le 1$
- 9 The critical spacing, s_{oil} is the anchor spacing where full load values may be used. The minimum spacing, s_{oil}, is the minimum anchor spacing for which values are available and installation is recommended. Spacing is measured from the center of one anchor to the center of an adjacent anchor.
- 10 The critical edge distance, c_{cr} is the edge distance where full load values may be used. The minimum edge distance, c_{min} , is the minimum edge distance for which values are available and installation is recommended. Edge distance is measured from the center of the anchor to the closest edge.
- 11 Embedment depth is measured from the outside face of the concrete masonry unit.
- 12 Load reduction factors are multiplicative, both spacing and edge distance load reduction factors must be considered. Load values for anchors installed at less than s_x and c_x must be multiplied by the appropriate load reduction factor based on actual edge distance (c) and spacing (s).


Table 101 - Hilti HIT-HY 200 allowable adhesive bond loads for threaded rods and reinforcing bars in the top of grout-filled concrete masonry walls^{1,2,3,4,5,6}

					Shear loa	ad lb (kN)9
Nominal anchor diameter or rebar size	Effective embedment in. (mm)	Edge distance in. (mm) ^{7,8}	Minimum end distance in. (mm)	Tension lb (kN)	Load parallel to edge of masonry wall	Load perpendicular to edge of masonry wall
		1 3/4		685	775	285
1/2"	4 -1/2	(44)		(3.0)	(3.4)	(1.3)
1/2	(114)	4		880	1,156	480
		(102)		(3.9)	(5.1)	(2.1)
		1 3/4		830	890	315
5/8"	5 -5/8	(44)	8	(3.7)	(4.0)	(1.4)
5/6	(143)	4	(203)	980	1,315	625
		(102)		(4.4)	(5.8)	(2.8)
#4	4 -1/2			770	605	235
#4	(114)	1 3/4		(3.4)	(2.7)	(1.0)
#6	5 -5/8	(44)		795	720	295
#5	(143)			(3.5)	(3.2)	(1.3)


¹ All values are for anchors installed in fully grouted concrete masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units shall be lightweight, medium-weight or heavy-weight conforming to ASTM C90. Allowable loads are calculated using a safety factor of 5.

- 3 One anchor shall be permitted to be installed in each concrete block.
- 4 Anchors are not permitted to be installed in a head joint, flange or web of the concrete masonry unit.
- 5 Allowable loads must be the lesser of the adjusted masonry or bond tabulated values and the steel values given in tables 102 and 103.
- 6 Tabulated allowable loads shall be adjusted for increased base material temperatures in accordance with figure 14.
- 7 For combined loading: $(T_{applied} / T_{allowable}) + (V_{applied} / V_{allowable}) \le 1$
- 8 The tabulated edge distance is measured from the anchor centerline to the edge of the concrete block. See figure below.
- 9 Linear interpolation of load values between the two tabulated edge distances is permitted.

Hilti HIT-HY 200 specifications for HAS threaded rod in grout-filled masonry walls

Edge and end distances for threaded rods and reinforcing bars installed in the top of grout-filled CMU

² When using the basic load combinations in accordance with IBC Section 1605.3.1 or the alternative basic load combinations in IBC Section 1605.3.2. Tabulated allowable loads must not be increased for seismic or wind loading.

Table 102 - Hilti HIT-HY 200 allowable tension and shear values for threaded rods based on steel strength 1,2,3

			Tensior	ı lb (kN)			Shear lb (kN)						
Anchor diameter in.	ISO 898 class 5.8	ASTM A36	ASTM A307	ASTM A193 B7	ASTM F593 CW (316/304)	HIT-(Z(-R)	ISO 898 class 5.8	ASTM A36	ASTM A307	ASTM A193 B7	ASTM F593 CW (316/304)	HIT-(Z(-R)	
3/8	2,640	2,115	2,185	4,555	3,645	3,430	1,360	1,090	1,125	2,345	1,875	1,770	
3/6	(11.7)	(9.4)	(9.7)	(20.3)	(16.2)	(15.3)	(6.0)	(4.8)	(5.0)	(10.4)	(8.3)	(7.9)	
1 /0	4,700	3,755	3,885	8,100	6,480	6,100	2,420	1,935	2,000	4,170	3,335	3,145	
1/2	(20.9)	(16.7)	(17.3)	(36.0)	(28.8)	(27.1)	(10.8)	(8.6)	(8.9)	(18.5)	(14.8)	(14.0)	
5/8	7,340	5,870	6,075	12,655	10,125	9,535	3,780	3,025	3,130	6,520	5,215	4,915	
5/6	(32.6)	(26.1)	(27.0)	(56.3)	(45.0)	(42.4)	(16.8)	(13.5)	(13.9)	(29.0)	(23.2)	(21.9)	
2/4	10,570	8,455	8,750	18,225	12,390	13,735	5,445	4,355	4,505	9,390	6,385	7,075	
3/4	(47.0)	(37.6)	(38.9)	(81.1)	(55.1)	(61.1)	(24.2)	(19.4)	(20.0)	(41.8)	(28.4)	(31.5)	

Table 103 - Hilti HIT-HY 200 allowable tension and shear values for reinforcing bars based on steel strength 1.2.3

	Tension lb (kN)	Shear Ib (kN)
Rebar size	ASTM A615, GRADE 60	ASTM A615, GRADE 60
#3	3,270	1,685
#3	(14.5)	(7.5)
ш.4	5,940	3,060
#4	(26.4)	(13.6)
	9,205	4,745
#5	(40.9)	(21.1)
#C	13,070	6,730
#6	(58.1)	(29.9)

¹ Allowable load used in the design must be the lesser of bond values and tabulated steel values.

² The allowable tension and shear values for threaded rods to resist short term loads, such as wind or seismic, must be calculated in accordance with the appropriate IBC Sections.

² Allowable steel loads are based on tension and shear stresses equal to 0.33 x Fu and 0.17 x Fu , respectively.

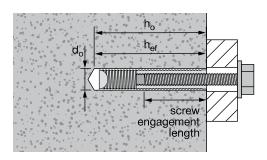


Table 104 - Hilti HIT-HY 200 allowable adhesive bond tension loads for HIS-N inserts in the face of grout-filled concrete masonry walls 1,2,3,4,5,6,7,8

				Spacing	9	Edge Distance ¹⁰			
Thread size in.	Effective embedment in. (mm) ¹¹	Tension lb (kN)	Critical s _{cr} in. (mm)	Minimum s _{min} in. (mm)	Load Reduction Factor @ s _{min} ^{6,12}	Critical c _{cr} in. (mm)	Minimum c _{min} in. (mm)	Load Reduction Factor @ c _{min} ¹²	
3/8-16 UNC	4 3/8	1,355	17		0.68	12		0.81	
3/8-16 UNC	(111)	(6.0)	(432)	4	0.00	(305)	4	0.61	
1/0 10 UNC	5	1,640	20	(102)	0.69	20	(102)	0.74	
1/2-13 UNC	(127)	(7.3)	(508)		0.68	(508)		0.74	

- 1 All values are for anchors installed in fully grouted concrete masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units shall be lightweight, medium-weight or heavy-weight conforming to ASTM C90. Allowable loads are calculated using a safety factor of 5.
- 2 Anchors may be installed in any location in the face of the masonry wall including cell, web, and mortar joints. Anchors are limited to one per masonry cell.
- 3 Linear interpolation of load values between minimum spacing (s_{min}) and critical spacing (s_{cr}) and between minimum edge distance (c_{min}) and critical edge distance (c_{cr}) is permitted.
- 4 Concrete masonry thickness must be equal to or greater than 1.5 times the anchor embedment depth.
- 5 When using the basic load combinations in accordance with IBC Section 1605.3.1, tabulated allowable loads must not be increased for seismic or wind loading When using the alternative basic load combinations in IBC Section 1605.3.2 that include seismic or wind loads, tabulated allowable loads may be increased by 33-1/3 percent, or the alternative basic load combinations may be reduced by a factor of 0.75.
- 6 Allowable loads must be the lesser of the adjusted masonry or bond tabulated values and the steel values given in tables 102 and 103.
- 7 Tabulated allowable loads shall be adjusted for increased base material temperatures in accordance with figure 14.
- 8 For combined loading: $(T_{applied} / T_{allowable}) + (V_{applied} / V_{allowable}) \le 1$
- 9 The critical spacing, s_{cr} is the anchor spacing where full load values may be used. The minimum spacing, s_{cri}, is the minimum anchor spacing for which values are available and installation is recommended. Spacing is measured from the center of one anchor to the center of an adjacent anchor.
- 10 The critical edge distance, c_{cr} is the edge distance where full load values may be used. The minimum edge distance, c_{min} , is the minimum edge distance for which values are available and installation is recommended. Edge distance is measured from the center of the anchor to the closest edge.
- 11 Embedment depth is measured from the outside face of the concrete masonry unit.
- 12 Load reduction factors are multiplicative, both spacing and edge distance load reduction factors must be considered. Load values for anchors installed at less than s_x and c_x must be multiplied by the appropriate load reduction factor based on actual edge distance (c) and spacing (s).

Hilti HIT-HY 200 specifications for HIS-N inserts in grout-filled masonry walls

Allowable anchor installation locations in the face of grout-filled concrete block

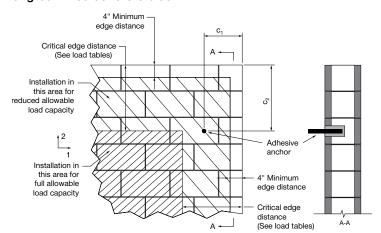
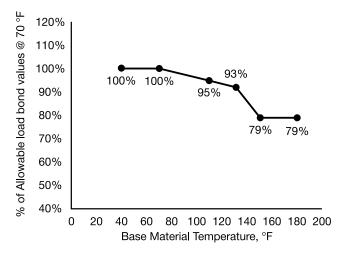



Table 105 - Hilti HIT-HY 200 allowable adhesive bond shear loads for HIS-N inserts in the face of grout-filled concrete masonry walls 1,2,3,4,5,6,7,8

			Spacing ⁹			Edge Distance ¹⁰			
	Effective		Critical Minimum		Critical	Minimum	Load Reduction Factor @ c _{min} ¹²		
Thread size in.	embedment in. (mm) ¹¹	Shear lb (kN)	s _{cr}	s _{min} in. (mm)	Load Reduction Factor @ s _{min} 6,12	c _{cr} in. (mm)	c _{min} in. (mm)	Load perpendicular to edge	Load parallel to edge
3/8-16 UNC	4 3/8	1,045	17.0		0.56	12		0.65	1.00
5/0-10 0110	(111)	(4.6)	(432)	4	0.50	(305)	4	0.03	1.00
1/2-13 UNC	5	1,730	20	(102)	0.50	20	(102)	0.36	0.91
1/2-13 UNC	(127)	(7.7)	(508)		0.50	(508)		0.36	0.91

- 1 All values are for anchors installed in fully grouted concrete masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units shall be lightweight, medium-weight or heavy-weight conforming to ASTM C90. Allowable loads are calculated using a safety factor of 5.
- 2 Anchors may be installed in any location in the face of the masonry wall including cell, web, and mortar joints. Anchors are limited to one per masonry cell.
- 3 Linear interpolation of load values between minimum spacing (s_{min}) and critical spacing (s_{cr}) and between minimum edge distance (c_{min}) and critical edge distance (c_{cr}) is permitted.
- Concrete masonry thickness must be equal to or greater than 1.5 times the anchor embedment depth.
- 5 When using the basic load combinations in accordance with IBC Section 1605.3.1, tabulated allowable loads must not be increased for seismic or wind loading When using the alternative basic load combinations in IBC Section 1605.3.2 that include seismic or wind loads, tabulated allowable loads may be increased by 33-1/3 percent, or the alternative basic load combinations may be reduced by a factor of 0.75.
- 6 Allowable loads must be the lesser of the adjusted masonry or bond tabulated values and the steel values given in tables 102 and 103.
- 7 Tabulated allowable loads shall be adjusted for increased base material temperatures in accordance with figure 14.
- 8 For combined loading: $(T_{applied} / T_{allowable}) + (V_{applied} / V_{allowable}) \le 1$
- 9 The critical spacing, s_{cr} is the anchor spacing where full load values may be used. The minimum spacing, s_{min}, is the minimum anchor spacing for which values are available and installation is recommended. Spacing is measured from the center of one anchor to the center of an adjacent anchor.
- 10 The critical edge distance, c_{cr} is the edge distance where full load values may be used. The minimum edge distance, c_{min} , is the minimum edge distance for which values are available and installation is recommended. Edge distance is measured from the center of the anchor to the closest edge.
- 11 Embedment depth is measured from the outside face of the concrete masonry unit.
- 12 Load reduction factors are multiplicative, both spacing and edge distance load reduction factors must be considered. Load values for anchors installed at less than s_{cr} and c_{cr} must be multiplied by the appropriate load reduction factor based on actual edge distance (c) and spacing (s).

Figure 14 - Influence of in-service temperature on bond strength¹

1 Test procedure involves the concrete being held at the elevated temperature for 24 hours then removing it from the controlled environment and testing to failure.

INSTALLATION INSTRUCTIONS

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www.hilti.com. Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

MATERIAL SPECIFICATIONS

Figure 15 - Hilti HIT-HY 200 adhesive cure time and working time (approx.)

	HIT-HY 200-A						
			S	HIT-Z ¹			
[°C]	[°F]	t _{work}	t _{cure}	t _{work}	t _{cure}		
-105	1423	1.5 h	7 h	-	-		
-40	2432	50 min	4 h	-	_		
15	3341	25 min	2 h	-	_		
610	4250	15 min	1.25 h	15 min	1.25 h		
1120	5168	7 min	45 min	7 min	45 min		
2130	6986	4 min	30 min	4 min	30 min		
3140	87104	3 min	30 min	3 min	30 min		

HIT-HY 200-R							
		HAS HIS-N MINIMAN Rebar Wannananan		HIT-Z ¹			
[°C]	[°F]	t _{work}	t _{cure}	t _{work}	t _{cure}		
-105	1423	3 h	20 h	-	-		
-40	2432	2 h	8 h	_	_		
15	3341	1 h	4 h	_	_		
610	4250	40 min	2.5 h	40 min	2.5 h		
1120	5168	15 min	1.5 h	15 min	1.5 h		
2130	6986	9 min	1 h	9 min	1 h		
3140	87104	6 min	1 h	6 min	1 h		

¹ It is permitted to install Hilti HIT-HY 200 with HIT-Z anchor rod down to 14° F (-10° C) provided the drilled hole has the drilling dust fully removed. This can be done with Hilti TE-CD or TE-YD hollow drill bit or with cleaning procedures used with standard threaded rod.

Resistance of cured Hilti HIT-HY 200 to chemicals

Chemical	Behavior	
Acetic acid	10%	+
Acetone		•
Ammonia	5%	+
Benzyl alcohol		-
Hydrochloric acid	10%	•
Chlorinated lime	10%	+
Citric acid	10%	+
Concrete plasticizer		+
De-icing salt (Calcium chloride)		+
Demineralized water		+
Diesel fuel		+
Drilling dust suspension pH 13.2		+
Ethanol	96%	-
Ethylacetate		-
Formic acid	10%	+
Formwork oil		+
Gasoline		+
Glycole		•
Hydrogen peroxide	10%	•
Lactic acid	10%	+
Maschinery oil		+
Methylethylketon		•
Nitric acid	10%	•
Phosphoric acid	10%	+
Potassium Hydroxide pH 13.2		+
Sea water		+
Sewage sludge		+
Sodium carbonate 10%	10%	+
Sodium hypochlorite 2%	2%	+
Sulphuric acid	10% 30%	+
Toluene	30 70	<u> </u>
Xylene		
Aylerie		

Key: - non-resistant

+ resistant

limited resistance

Samples of the HIT-HY 200 adhesive were immersed in the various chemical compounds for up to one year. At the end of the test period, the samples were analyzed. Any samples showing no visible damage and having less than a 25% reduction in bending (flexural) strength were classified as "Resistant." Samples that had slight damage, such as small cracks, chips, etc. or reduction in bending strength of 25% or more were classified as "Limited Resistance" (i.e. exposed for 48 hours or less until chemical is cleaned up). Samples that were heavily damaged or destroyed were classified as "Non-Resistant."

Note: In actual use, the majority of the adhesive is encased in the base material, leaving very little surface area exposed.

ORDERING INFORMATION

HIT-Z anchor rod

Description	Bit dia. (in.)	Min. embed. (in.)	Qty
HIT-Z 3/8 x 3-3/8	7/16	2-3/8	40
HIT-Z 3/8 x 4 3/8	7/16	2-3/8	40
HIT-Z 3/8 x 5 1/8	7/16	2-3/8	40
HIT-Z 3/8 x 6 3/8	7/16	2-3/8	40
HIT-Z 1/2 x 4 1/2	9/16	2-3/4	20
HIT-Z 1/2 x 6 ½	9/16	2-3/4	20
HIT-Z 1/2 x 8	9/16	2-3/4	20
HIT-Z 5/8 x 6	3/4	3-3/4	12
HIT-Z 5/8 x 8	3/4	3-3/4	12
HIT-Z 5/8 x 9 1/2	3/4	3-3/4	12
HIT-Z 3/4 x 6-1/2	7/8	4	6
HIT-Z 3/4 x 8 1/2	7/8	4	6
HIT-Z 3/4 x 9 ¾	7/8	4	6

HIT-HY 200-A

HIT-HY 200-R

HIT-HY 200-A (accelerated working time)

Description	Package contents	Qty
HIT-HY 200-A (11.1 fl oz/330 ml)	Includes (1) foil pack with (1) mixer and 3/8 filler tube per pack	1
HIT-HY 200-A Master Carton (11.1 fl oz/330 ml)	Includes (1) master carton containing (25) foil packs with (1) mixer and 3/8 filler tube per pack	25
HIT-HY 200-A Combo (11.1 fl oz/330 ml)	Includes (1) master carton containing (25) foil packs with (1) mixer and 3/8 filler tube per pack and (1) HDM 500 Manual Dispenser	25
HIT-HY 200-A Master Carton (16.9 fl oz/500 ml)	Includes (1) master carton containing (20) foil packs with (1) mixer and 3/8 filler tube per pack	20
HIT-HY 200-A Combo (16.9 fl oz/500 ml)	Includes (2) master cartons containing (20) foil packs each with (1) mixer and 3/8 filler tube per pack and (1) HDM 500 Manual Dispenser	40
HIT-RE-M Static Mixer	For use with HIT-HY 200-A cartridges	1

HIT-HY 200-R (regular working time)

Description	Package contents	Qty
HIT-HY 200-R (11.1 fl oz/330 ml)	Includes (1) foil pack with (1) mixer and 3/8 filler tube per pack	1
HIT-HY 200-R Master Carton (11.1 fl oz/330 ml)	Includes (1) master carton containing (25) foil packs with (1) mixer and 3/8 filler tube per pack	25
HIT-HY 200-R Combo (11.1 fl oz/330 ml)	Includes (1) master carton containing (25) foil packs with (1) mixer and 3/8 filler tube per pack and (1) HDM 500 manual dispenser	25
HIT-HY 200-R Master Carton (16.9 fl oz/500 ml)	Includes (1) master carton containing (20) foil packs with (1) mixer and 3/8 filler tube per pack	20
HIT-HY 200-R Combo (16.9 fl oz/500 ml)	Includes (2) master cartons containing (20) foil packs each with (1) mixer and 3/8 filler tube per pack and (1) HDM 500 manual dispenser	40
HIT-RE-M Static Mixer	For use with HIT-HY 200-R cartridges	1

TE-CD Hollow Drill Bits

Order Description	Working length (in.)
Hollow Drill Bit TE-CD 1/2-13	8
Hollow Drill Bit TE-CD 9/16-14	9-1/2
Hollow Drill Bit TE-CD 5/8-14	9-1/2
Hollow Drill Bit TE-CD 3/4-14	9-1/2
Hollow Drill Bit TE-CD 16-A (Replacement collar)	

TE-YD Hollow Drill Bits

Order Description	Working Length (in.)
Hollow Drill Bit TE-YD 3/4-24	15-1/2
Hollow Drill Bit TE-YD 7/8-24	15-1/2
Hollow Drill Bit TE-YD 1-24	15-1/2
Hollow Drill Bit TE-YD 1 1/8-24	15-1/2
Hollow Drill Bit TE-YD 25-A (Replacement collar)	

For ordering information on anchor rods and inserts, dispensers, hole cleaning equipment and other accessories, see section 3.2.9.