

GENERAL INFORMATION

POWER-BOLT®+

Heavy Duty Sleeve Anchor

3/8" diameter anchor data for CIP is bubbled for convenience

*CIP See Pages 2,3,4

PRODUCT DESCRIPTION

The Power-Bolt+ anchor is a torque controlled, heavy duty sleeve style anchor which is designed for consistent performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete and sand-lightweight concrete. The anchor is manufactured with a zinc plated carbon steel bolt, sleeve, cone and expansion clip. The Power-Bolt+ has a low profile finished hex head.

GENERAL APPLICATIONS AND USES

- Structural connections, i.e., beam and column anchorage
- Safety-related attachments and tension zone applications
- Interior applications / low level corrosion environment
- Heavy duty applications

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Anchor design allows for follow-up expansion after setting under tensile loading
- + High shear load capacity

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3260 for cracked and uncracked concrete 1/2", 5/8" and 3/4" diameters
- Code compliant with 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, and 2009 IRC
- Tested in accordance with ACl 355.2 and ICC-ES AC193 (including ASTM E 488) for use in structural concrete under the design provisions of ACl 318-14 Chapter 17 or ACl 318-11/08 (Appendix D)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors): 1/2". 5/8" and 3/4" diameters

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchoring and 05 05 19 - Post-Installed Concrete Anchors Expansion anchors shall be Power-Bolt+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	1
Installation Instructions	2
Installation Specifications	2
Reference Performance Data	3
Allowable Stress Design (ASD)	
Design Criteria	4
Strength Design Information	5
Strength Design	
Performance Data	8
Ordering Information	9

POWER-BOLT+ ASSEMBLY

HEAD STYLES

Finished Hex Head

ANCHOR MATERIALS

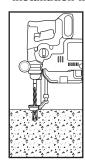
 Zinc plated carbon steel bolt, washer, cone, sleeve, and expansion clip; assembled with a plastic compression ring and retainer nut

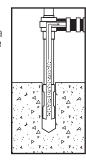
ANCHOR SIZE RANGE (TYP.)

• 1/4" diameter through 3/4" diameter

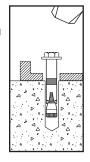
SUITABLE BASE MATERIALS

- Normal-weight concrete
- Sand-lightweight concrete

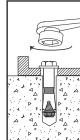




INSTALLATION INSTRUCTIONS


Installation Instructions for Power-Bolt+ Anchor

Step 1 Using the proper drill bit size, drill a hole into the base material to the required depth. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15.


Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling..
Ensure the cone is snug
and uniformly under the expansion wedge (clip) with the clip fingers overlapping the anchor cone, prior to installation using the retention nut (see photo below).

Power-Bolt+ Anchor Assembly

Washer

Step 3 Drive anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth, hnom

Expansion Wedge (Clip)

Step 4 Tighten the anchor with a torque wrench by applying the required installation torque, Tinst.

Head Marking

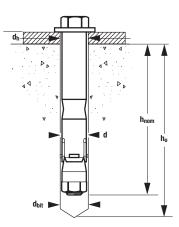
Legend

'PB+' Symbol = Power-Bolt+ Strength Design Compliant (see ordering information)

Letter Code = Length Identification Mark

Compression Ring Cone Retention Nut Bolt

Sleeve


Length Identification

Mark	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"	11"
Length ident	enoth identification mark indicates overall lenoth of anchor																	

INSTALLATION SPECIFICATIONS

Power-Rolt - Anchor Installation Specifications

Anchor Property/Setting	Notation	Units		Nopin	Anchor Dia	meter (in.)	
Information	Notation	Units	1/4	3/8	1/2	5/8	3/4
Anchor outside diameter	d	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)
Internal Bolt Diameter (UNC)	-	in. (mm)	#8 (4)	1/4 (6.4)	3/8 (9.5)	7/16 (11.1)	9/16 (14.3)
Nominal drill bit diameter	d _{bit}	in. (mm)	1/4 ANSI	3/8 ANSI	1/2 ANSI	5/8 ANSI	3/4 ANSI
Minimum diameter of hole clearance in fixture	dh	in. (mm)	5/16 (8)	7/16 (11)	9/16 (14)	11/16 (17)	13/16 (21)
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-1/4 (32)	1-5/8 (41)	2-1/2 (64)	2-3/4 (70)	3 (76.2)
Minimum hole depth	h₀	in. (mm)	1-1/2 (38)	1-7/8 (48)	3 (76)	3-1/4 (83)	3-5/8 (92)
Minimum member thickness	h _{min}	in. (mm)	3-1/2 (89)	4-1/2 (114)	5 (127)	6-1/2 (165)	7 (178)
Minimum edge distance	Cmin	in. (mm)	1-3/4 (44)	2-3/4 (70)	3-1/4 (83)	4-1/2 (114)	6 (152)
Minimum spacing distance	Smin	in. (mm)	(51)	3-1/2 (89)	4-1/2 (114)	6 (152)	6 (152)
Installation torque	Tinst	ftlbf. (N-m)	4 (5)	20 (27)	40 (54)	60 (81)	110 (149)
Torque wrench/socket size	-	in.	3/8	1/2	5/8	3/4	15/16
Bolt Head Height	-	in. (mm)	1/8	13/64 (5)	9/32 (7)	5/16 (8)	3/8 (10)

REFERENCE PERFORMANCE DATA

Ultimate Load Capacities for Power-Bolt+ in Normal-Weight Concrete^{1,2}

ſ	Nominal	Minimum		Minimum Concrete Compressive Strength											
	Anchor Diameter	Embed. Depth	f'c = 2,500 ps	si (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 p	si (27.6 MPa)	f'c = 6,000 p	si (41.4 MPa)	f'c = 8,000 p	si (55.2 MPa)			
	d in.	in. (mm) h _{nom}	Tension lbs. (kN)	Shear Ibs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)			
	1/4	1-1/4 (32)	1,245 (5.5)	1,670 (7.4)	1,260 (5.6)	1,670 (7.4)	1,290 (5.7)	1,670 (7.4)	1,345 (6.0)	1,670 (7.4)	1,397 (6.2)	1,670 (7.4)			
$ \bot $	1/4	1-3/4	1,740	1,670	1,905	1,670	1,945	1,670	1,945	1,670	1,945	1,670			
	7 7 7	Y (4X) Y	Y (7.7 y	(7.4)	(8.5)	Y (X4) Y	Y (8. Y) Y	(7.4)	(8.7)Y	(7.4)	Y (877) Y	Y (7.X)			
		1-5/8 (41)	1,420 (6.3)	2,420 (10.8)	1,555 (6.9)	2,460 (10.9)	1,795 (8.0)	2,460 (10.9)	2,105 (9.4)	2,470 (11.0)	2,430 (10.8)	2,810 (12.5)			
	3/8	2 (51)	2,740 (12.2)	3,990 (17.7)	3,000 (13.3)	3,990 (17.7)	3,465 (15.4)	3,990 (17.7)	4,140 (18.4)	3,990 (17.7)	4,425 (19.7)	3,990 (17.7)			
,		2-3/4 (70)	4,130 (18.4)	3,990 (17.7)	4,425 (19.7)	3,990 (17.7)	4,425 (19.7)	3,990 (17.7)	4,425 (19.7)	3,990 (17.7)	4,425 (19.7)	3,990 (17.7)			
U	لكك	V 2-1 /	3880	7420	1450X	1800×	1905	3030	5450	18830X	155181	Jana A			
I		(64)	(17.3)	(33.0)	(18.9)	(35.7)	(21.8)	(35.7)	(22.9)	(35.7)	(24.5)	(35.7)			
	1/2	3 (76)	5,190 (23.1)	8,030 (35.7)	5,685 (25.3)	8,030 (35.7)	6,560 (29.2)	8,030 (35.7)	7,985 (35.5)	8,030 (35.7)	9,065 (40.3)	8,030 (35.7)			
		3-1/4 (83)	7,120 (31.7)	8,030 (35.7)	7,660 (34.1)	8,030 (35.7)	8,645 (38.5)	8,030 (35.7)	9,400 (41.8)	8,030 (35.7)	10,835 (48.2)	8,030 (35.7)			
Ì		2-3/4 (70)	4,745 (21.1)	9,975 (44.4)	5,195 (23.1)	10,930 (48.6)	6,000 (26.7)	12,620 (56.1)	6,845 (30.4)	13,155 (58.5)	7,200 (32.0)	13,155 (58.5)			
	5/8	3-1/2 (89)	6,995 (31.1)	9,975 (44.4)	7,660 (34.1)	10,930 (48.6)	8,845 (39.3)	12,620 (56.1)	11,325 (50.4)	13,155 (58.5)	12,900 (57.4)	13,155 (58.5)			
		3-3/4 (95)	8,710 (38.7)	12,015 (53.4)	9,545 (42.5)	14,320 (63.7)	11,020 (49.0)	16,535 (73.6)	12,820 (57.0)	18,250 (81.2)	14,800 (65.8)	18,250 (81.2)			
		3 (76)	5,655 (25.2)	10,950 (48.7)	6,195 (27.6)	11,995 (53.4)	7,155 (31.8)	13,850 (61.6)	8,385 (37.3)	18,510 (82.3)	9,685 (43.1)	21,370 (95.1)			
	3/4	4-3/8 (111)	10,870 (48.4)	18,635 (82.9)	11,910 (53.0)	20,415 (90.8)	13,750 (61.2)	23,575 (104.9)	14,705 (65.4)	23,575 (104.9)	16,975 (75.5)	23,575 (104.9)			
İ		7 (178)	18,145 (80.7)	24,290 (108.0)	19,880 (88.4)	24,290 (108.0)	22,955 (102.1)	24,290 (108.0)	28,445 (126.5)	24,290 (108.0)	29,863 (132.8)	24,290 (108.0)			

^{1.} The tabulated load values are applicable to single anchors installed in uncracked concrete with no edge or spacing considerations. Concrete compressive strength must be at the specified minimum at the time of installation.

Allowable Load Capacities for Power-Bolt+ in Normal-Weight Concrete^{1,2,3}

ſ	Nominal	Minimum				Minim	um Concrete C	ompressive St	rength			
- 1	Anchor Diameter	Embed. Depth	f'c = 2,500 p	si (17.3 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 ps	si (27.6 MPa)	f'c = 6,000 p	si (41.4 MPa)	f'c = 8,000 p	si (55.2 MPa)
	d in.	in. (mm) h _{nom}	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)
	1/4	1-1/4 (32)	310 (1.4)	420 (1.9)	315 (1.4)	420 (1.9)	325 (1.4)	420 (1.9)	335 (1.5)	420 (1.9)	350 (1.6)	420 (1.9)
┙	1/4	1-3/4	435	420	475	420	485	420	485	420	485	420
	Y Y Y	(44)	\(1.9\\)	(1.9)		Y (Ma) X	\(\(\)(2\)\(\)	\(\(\)\(\)\(\)	\(2.2\)	(#.9)\	(3/2)	
		1-5/8 (41)	355 (1.6)	605 (2.7)	390 (1.7)	615 (2.7)	450 (2.0)	615 (2.7)	525 (2.3)	620 (2.8)	610 (2.7)	705 (3.1)
	3/8	2 (51)	685 (3.0)	1,000 (4.4)	750 (3.3)	1,000 (4.4)	865 (3.8)	1,000 (4.4)	1,035 (4.6)	1,000 (4.4)	1,105 (4.9)	1,000 (4.4)
		2-3/4 (70)	1,035 (4.6)	1,000 (4.4)	1,105 (4.9)	1,000 (4.4)	1,105 (4.9)	1,000 (4.4)	1,105 (4.9)	1,000 (4.4)	1,105 (4.9)	1,000 (4.4)
J)2-1/2 (64)	970 <u>,</u> (4.3)	1,855	1,065	2,010	1,235	2,010	1,290	2,010	1,880	2,010
	1/2	3	1,300	2,010	1,420	2,010	1,640	2,010	1,995	2,010	2,265	2,010
-	.,_	(76)	(5.8)	(8.9)	(6.3)	(8.9)	(7.3)	(8.9)	(8.9)	(8.9)	(10.1)	(8.9)
		3-1/4 (83)	1,780 (7.9)	2,010 (8.9)	1,915 (8.5)	2,010 (8.9)	2,160 (9.6)	2,010 (8.9)	2,350 (10.5)	2,010 (8.9)	2,710 (12.1)	2,010 (8.9)
		2-3/4 (70)	1,185 (5.3)	2,495 (11.1)	1,300 (5.8)	2,735 (12.2)	1,500 (6.7)	3,155 (14.0)	1,710 (7.6)	3,290 (14.6)	1,800 (8.0)	3,290 (14.6)
İ	5/8	3-1/2 (89)	1,750 (7.8)	2,495 (11.1)	1,915 (8.5)	2,735 (12.2)	2,210 (9.8)	3,155 (14.0)	2,830 (12.6)	3,290 (14.6)	3,225 (14.3)	3,290 (14.6)
	l	3-3/4	2,180 (9.7)	3,005 (13.4)	2,385 (10.6)	3,580 (15.9)	2,755 (12.3)	4,135 (18.4)	3,205 (14.3)	4,565	3,700 (16.5)	4,565
ł		(95)	1,415	2,740	1,550	3,000	1,790	3,465	2,095	(20.3) 4,630	2,420	(20.3) 5,345
ļ		(76)	(6.3)	(12.2)	(6.9)	(13.3)	(8.0)	(15.4)	(9.3)	(20.6)	(10.8)	(23.8)
	3/4	4-3/8 (111)	2,720 (12.1)	4,660 (20.7)	2,980 (13.3)	5,105 (22.7)	3,440 (15.3)	5,895 (26.2)	3,675 (16.3)	5,895 (26.2)	4,245 (18.9)	5,895 (26.2)
		7 (178)	4,535 (20.2)	6,075 (27.0)	4,970 (22.1)	6,075 (27.0)	5,740 (25.5)	6,075 (27.0)	7,110 (31.6)	6,075 (27.0)	7,465 (33.2)	6,075 (27.0)

^{1.} Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the applications, such as life safety or overhead.

^{2.} Ultimate load capacities must reduced by a minimum safety factor of 4.0 or greater to determine allowable working loads.

^{2.} Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

^{3.} Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

ALLOWABLE STRESS DESIGN (ASD) DESIGN CRITERIA

Spacing Reduction Factors Tension (F_{NS})

Spacing Keal	uction rat	ינטו אַ	LE11240	(FNS)		
Diameter (in)		1/4	3/8	1/2	5/8	3/4
Nominal Embedme	nt h _{nom} (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Spacing Smin (in)		2(3-1/2	4-1/2	6	5
	2	0.78	-	ή.	-	-
	2-1/2	0.82	-	K -	-	-
	3	0.8	-	X -	-	-
	3-1/2	0.9	0.80) -	-	-
	4	0.96	0.83) -	-	-
_	4-1/2	1.00	0.86	0.83	-	-
l se di	5	1.00	0.89	0.85	-	0.77
Spacing Distance (inches)	5-1/2	1.00	0.92	0.88	-	0.79
ance	6	1.00	0.95	0.91	0.85	0.81
Dist	6-1/2	1.00	0.98	0.93	0.87	0.83
<u>iii</u>	7	1.00	1.00	0.96	0.90	0.85
pac	7-1/2	1.00	1.00	0.98	0.92	0.87
	8	1.00	1.00	1.00	0.95	0.89
	8-1/2	1.00	1.00	1.00	0.97	0.92
	9	1.00	1.00	1.00	1.00	0.94
	9-1/2	1.00	1.00	1.00	1.00	0.96
	10	1.00	1.00	1.00	1.00	0.98
	10-1/2	1.00	1.00	1.00	1.00	1.00

Edge Distance Reduction Factors Tension (F_{NC})

Diameter (in)		1/4	3/8	1/2	5/8	3/4
Nominal Embedmen	rt h _{nom} (in)	1-1/4	2	2 -1/2	2-3/4	3
Minimum Edge Distar	ice Cmin (in)	1-3/4	2-3/4	3-1/4	4-1/2	6
	1-3/4	0.39	-)-	-	-
	2	0.44	-	٦-	-	-
	2-1/2	0.56	-	イ -	-	-
	3	0.67	0.46		-	-
<u> </u>	3-1/4	0.72	0.50	d .41	-	-
Che	3-1/2	0.78	0.54	0.44	-	-
Edge Distance (inches)	4	0.89	0.62) .50	-	-
ance	4-1/2	1.00	0.69	1 0.56	0.75	-
Dist	5	1.00	0.77	4 .63	0.83	-
dge	5-1/2	1.00	0.85	d .69	0.92	-
ш	6	1.00	0.92	0.75	1.00	0.75
	6-1/2	1.00	1.00	3 .81	1.00	0.81
	7	1.00	1.00	4 0.88	1.00	0.88
	7-1/2	1.00	1.00	4).94	1.00	0.94
	8	1.00	1.00	2.00	1.00	1.00

Spacing Reduction Factors - Shear (Fvs)

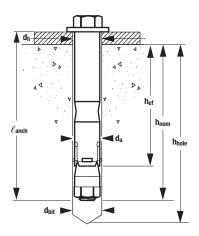
Diameter (in)	1/4	3/8	1/2	5/8	3/4
Nominal Embedme	nt h _{nom} (in)	1-1/4	2	2-1/2	2-3/4	3
Minimum Spacin	Minimum Spacing Smin (in)		3-1/2	4-1/2	6	5
	2	0.86	-	Κ-	-	-
	2-1/2	0.89	-	ノ -	-	-
	3	0.92	-) -	-	-
	3-1/2	0.94	0.88) -	-	-
	4	0.97	0.90	<u>Ŋ - </u>	-	-
	4-1/2	1.00	0.91	\ 0.89	-	-
hes	5	1.00	0.93	0.91	-	0.84
Spacing Distance (inches)	5-1/2	1.00	0.95	0.93	-	0.86
ance	6	1.00	0.97	0.94	0.89	0.87
Dista	6-1/2	1.00	0.99	0.96	0.91	0.88
ing	7	1.00	1.00	0.97	0.93	0.90
spac	7-1/2	1.00	1.00	0.99	0.94	0.91
3 ,	8	1.00	1.00	1.00	0.96	0.93
	8-1/2	1.00	1.00	1.00	0.98	0.94
	9	1.00	1.00	1.00	1.00	0.96
	9-1/2	1.00	1.00	1.00	1.00	0.97
	10	1.00	1.00	\ 1.00	1.00	0.99
	10-1/2	1.00	1.00	1.00	1.00	1.00

Edge Distance Reduction Factors - Shear (Fvc)

Diameter (1/4	3/8	1/2	5/8	3/4	
Nominal Embedme	1-1/4	2 .	2-1/2	2-3/4	3	
Minimum Edge Dista	nce c _{min} (in)	1-3/4	2-3/4	3-1/4	4-1/2	6
	1-3/4	0.39	-) -	-	-
	2	0.44	-]) -	-	-
	2-1/2	0.56	- '	<u> </u>	-	-
	3	0.67	0.44	K -	-	-
	3-1/4	0.72	0.48	0.41	-	-
	3-1/2	0.78	0.52	0.44	-	-
	4	0.89	0.59	0.51	-	-
(8)	4-1/2	1.00	0.67	0.57	0.50	-
ii d	5	1.00	0.74	K 0.63	0.56	-
Edge Distance (inches)	5-1/2	1.00	0.81	0.70	0.61	-
stan	6	1.00	0.89	0.76	0.67	0.57
<u>e</u>	6-1/2	1.00	0.96	0.83	0.72	0.62
<u> </u>	7	1.00	1.00	0.89	0.78	0.67
	7-1/2	1.00	1.00	0.95	0.83	0.71
	8	1.00	1.00	1.00	0.89	0.76
	8-1/2	1.00	1.00	1.00	0.94	0.81
	9	1.00	1.00	1.00	1.00	0.86
	9-1/2	1.00	1.00	1.00	1.00	0.90
	10	1.00	1.00	1.00	1.00	0.95
	10-1/2	1.00	1.00	K 1.00	1.00	1.00

STRENGTH DESIGN INFORMATION

CODE LISTED ICC-ES ESR-3260


Power-Bolt+ Anchor Installation Specifications¹

Analysis Durante (Calling Information	Natation	II!I.o.		Norminal Anchor Diameter (in.)		
Anchor Property/Setting Information	Notation	Units	1/2	5/8	3.	/4
Anchor outside diameter	da	in. (mm)	0.500 (12.7)	0.625 (15.9)		750 9.1)
Internal bolt diameter (UNC)	-	in. (mm)	3/8 (9.5)	7/16 (11.1)		(16 4.3)
Minimum diameter of hole clearance in fixture	d _h	in. (mm)	9/16 (14.3)	11/16 (17.5)		/16 1.6)
Nominal drill bit diameter	dbit	in.	1/2 ANSI	5/8 ANSI		/4 NSI
Minimum nominal embedment depth	h _{nom}	in. (mm)	3-1/4 (83)	3-3/4 (95)		3/8 11)
Effective embedment	h _{ef}	in. (mm)	2-5/8 (67)	3 (76)		1/2 39)
Minimum hole depth	h _{hole}	in. (mm)	3-3/4 (95)	4-1/4 (108)		5 27)
Minimum member thickness	h _{min}	in. (mm)	5 (127)	6-1/2 (165)		7 78)
Minimum overall anchor length ²	lanch	in. (mm)	3-1/2 (89)	4 (102)		1/4 33)
Minimum edge distance	Cmin	in. (mm)	3-1/4 (83)	4-1/2 (114)	6 (152)	8 (203)
Minimum spacing distance	Smin	in. (mm)	4-1/2 (114)	6 (152)	6 (152)	5 (127)
Critical edge distance	Cac	in. (mm)	8 (203)	6 (152)		8 03)
Installation torque	T _{inst}	ftlbf. (N-m)	40 (54)	60 (81)		10 49)
Bolt Head Height	-	in. (mm)	9/32 (7.1)	5/16 (7.9)	3/8 (9.6)	
Torque wrench/socket size	-	in.	5/8	3/4	15/16	

For SI:1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.
- 2. The listed minimum overall anchor length is based on anchor sizes available at the time of publication compared with the requirements for the minimum nominal embedment depth and fixture attachment.

Power-Bolt+ Anchor Detail

Tension Design information for Power-Bolt+ Anchor in Concrete (for use with load combinations taken form ACI 318-14, Section 5.3 or ACI 318-11, Section 9.2)^{1,2}

Paris Shared St.	Matation			Nominal Anchor Diameter			
Design Characteristic	Notation	Units	1/2	5/8	3/4		
Anchor category	1,2 or 3	-	1	1	1		
Nominal embedment depth	h _{nom}	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3/8 (111)		
	STEEL ST	TRENGTH IN T	ENSION ⁴				
Minimum specified yield strength	fy	ksi (N/mm²)	130 (896)	130 (896)	130 (896)		
Minimum specified ultimate tensile strength ⁸	futa	ksi (N/mm²)	150 (1,034)	150 (1,034)	150 (1,034)		
Effective tensile stress area (threads)	Ase, N	in² (mm²)	0.0775 (50)	0.1063 (68.6)	0.1820 (117.4)		
Steel strength in tension	N _{sa}	lb (kN)	9,685 (43.1)	13,285 (59.1)	27,300 (121.4)		
Reduction factor for steel strength ³	φ	-	0.	75	0.65		
CON	ICRETE BREA	KOUT STREN	GTH IN TENSION ⁷				
Effective embedment	h _{ef}	in. (mm)	2.625 (67)	3.000 (76)	3.500 (89)		
Effectiveness factor for uncracked concrete	Kucr	-	27 (11.3)	27 (11.3)	24 (10.0)		
Effectiveness factor for cracked concrete	K _{cr}	-	17 (7.1)	17 (7.1)	17 (7.1)		
Modification factor for cracked and uncracked concrete ⁵	$\psi_{\scriptscriptstyle{C},N}$	-	1.0	1.0	1.0		
Critical edge distance (uncracked concrete)	Cac	in. (mm)	8 (203)	6 (152)	8 (203)		
Reduction factor for concrete breakout strength ⁴	φ	-		0.65 (Condition B)			
PULLOUT STI	RENGTH IN TE	NSION (NON-	SEISMIC APPLICATIONS)				
Characteristic pullout strength, uncracked concrete (2,500 psi)	$N_{p,uncr}$	lb (kN)	Not Applicable ⁶	Not Applicable ⁶	Not Applicable ⁶		
Characteristic pullout strength, cracked concrete (2,500 psi)	$N_{p,cr}$	lb (kN)	Not Applicable ⁶	Not Applicable ⁶	Not Applicable ⁶		
Reduction factor for pullout strength	φ	-	- 0.65 (Condition B)				
PULLOUT ST	RENGTH IN 1	ENSION FOR	SEISMIC APPLICATIONS ⁷				
Characteristic pullout strength, seismic (2,500 psi)	$N_{p,eq}$	lb (kN)	Not Applicable ⁶	Not Applicable ⁶	Not Applicable ⁶		
Reduction factor for pullout strength	φ	-		0.65 (Condition B)			

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm²; 1 lbf = 0.0044 kN.

- 1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.
- 2. Installation must comply with the manufacturer's published installation instructions.
- 3. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.3. The anchors are ductile steel elements as defined in ACI 318-14 2.3 or ACI 318-11 D.1, as applicable, except for the 3/4-inch-diameter, which is considered a brittle steel element for the purposes of design.
- 4. The tabulated value of ϕ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition A are satisfied, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.4.
- 5. For all design cases use $\Psi_{c,N}=1.0$. The appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked concrete (k_{uncr}) must be used.
- 6. Pullout strength does not control design.
- 7. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8λ is applied to all values of $\sqrt{f'c}$ affecting N_a and V_a . λ shall be determined in accordance with the corresponding version of ACI 318.
- 8. In accordance with ACl 318-14 17.4.1.2 and Eq. 17.4.1.2 or ACl 318-11 D.5.1.2 and Eq. D-2, as applicable, the nominal steel strength in tension is calculated using a limited value of fun of 125 ksi.

Mean Axial Stiffness Values, β , for Power-Bolt+ Anchors in Normal-Weight Concrete

Concrete State	Units		Nominal Anchor Diameter						
Concrete State	Units	1/2 inch	5/8 inch	3/4 inch					
Uncracked concrete	10³ lbf/in. (kN/mm)	366 (63)	871 (150)	256 (44)					
Cracked concrete	10³ lbf/in. (kN/mm)	64 (11)	94 (16)	27 (5)					
Mean values shown; actual stiffner	1. Mean values shown; actual stiffness varies considerably depending on concrete strength, loading and geometry of application.								

Shear Design information for Power-Bolt+ Anchor in Concrete (For use with load combinations taken from ACI 318-14, Section 5.3 or ACI 318-11, Section 9.2)¹²

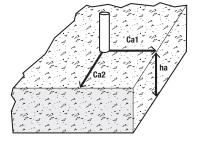
Design Characteristic		Units	Nominal Anchor Diameter					
Design GnaraGensuc	Notation	Uiiits	1/2	5/8	3/4			
Anchor category	1, 2 or 3	-	1	1	1			
Nominal embedment depth	h _{nom}	in. (mm)	3-1/4 (83)	3-3/4 (95)	4-3/8 (111)			
	STEE	L STRENGTH	IN SHEAR					
Minimum specified yield strength	fy	ksi (N/mm²)	130 (896)	130 (896)	130 (896)			
Minimum specified ultimate strength	f _{uta}	ksi (N/mm²)	150 (1,034)	150 (1,034)	150 (1,034)			
Effective shear stress area	A _{se,v}	in² (mm²)	0.1069 (69.0)	0.1452 (93.7)	0.2410 (153)			
Steel strength in shear ⁶	V _{sa}	lb (kN)	6,005 (26.7)	13,415 (59.7)	14,820 (65.9)			
Reduction factor for steel strength ³	φ	-	0.0	65	0.60			
	CONCRETE B	REAKOUT STF	RENGTH IN SHEAR					
Load bearing length of anchor	lе	in (mm)	1.00 (25)	1.25 (32)	1.50 (51)			
Nominal anchor diameter	da	in (mm)	0.500 (12.7)	0.625 (15.9)	0.750 (19.05)			
Reduction factor for concrete breakout⁴	ϕ	-						
	PRYO	UT STRENGTH	IN SHEAR ⁷					
Coefficient for pryout strength (1.0 for $h_{\text{ef}} < 2.5$ in., 2.0 for $h_{\text{ef}} \ge 2.5$ in.)	K _{cp}	-	2.0	2.0	2.0			
Effective embedment	h _{ef}	in (mm)	2.625 (675)	3.000 (76)	3.500 (89)			
Reduction factor for pryout strength ⁵	ϕ	-		0.70 (Condition B)				
STEEL STRENGTH IN SHEAR FOR SEISMIC APPLICATIONS								
Steel strength in shear, seismic ⁸	Vsa, eq	lb (kN)	4,565 (20.3)	7,425 (33.0)	14,820 (65.9)			
Reduction factor for steel strength in shear for seismic ³	ϕ	-	0.	65	0.60			

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm^2 ; 1 lbf = 0.0044 kN.

- 1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.
- 2. Installation must comply with the manufacturer's published installation instructions.
- 3. The tabulated value of ϕ for steel strength applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for steel strength must be determined in accordance with ACI 318-11 D.4.3. The anchors are ductile steel elements as defined in ACI 318-14 2.3 or ACI 318-11 D.1, as applicable, except for the 3/4-inch-diameter which is considered a brittle steel element for the purposes of design.
- 4. The tabulated value of ϕ for concrete breakout strength applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition B are satisfied. If the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition A are satisfied, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ for concrete breakout strength must be determined in accordance with ACI 318-11 D.4.4.
- 5. The tabulated value of for pryout strength applies if the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ for pryout strength must be determined in accordance with ACI 318-11 D.4.4, for condition B.
- 6. Tabulated values for steel strength in shear must be used for design. The tabulated values for the shear stress area are listed conservatively and the results for the steel strength will be more conservative when using ACI 318-14 Eq. 17.5.1.2b or ACI 318-11 Eq. D-29, as applicable.
- Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8λ is applied to all values of √f^c affecting N_a and V_a. λ shall be determined in accordance with the corresponding version of ACI 318.
- 8. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6.

STRENGTH DESIGN PERFORMANCE DATA

Factored design strength Φ Nn and Φ Vn Calculated in accordance with ACI 318-14 Chapter 17 Tested to the International Building Code

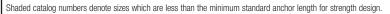

Tension and Shear Design Strengths for Power-Bolt+ in Cracked Concrete 1,2,3,4,5,6

		Minimum Concrete Compressive Strength											
Nominal Nominal Anchor Embed.		f'c = 2,500 psi		f'c = 3,000 psi		f'c = 4,	000 psi	f'c = 6,000 psi		f'c = 8,000 psi			
Diameter (in.)	h _{nom} (in.)	⊕Nn Tension (lbs.)	⊅ Vn Shear (lbs.)	⊕ Nn Tension (lbs.)	⊅ Vn Shear (lbs.)	⊕Nn Tension (lbs.)	⊅ Vn Shear (lbs.)	⊕Nn Tension (lbs.)	⊅ Vn Shear (lbs.)	⊕Nn Tension (lbs.)	⊅ Vn Shear (lbs.)		
1/2	3-1/4	2,350	2,905	2,575	3,185	2,970	3,675	3,640	3,905	4,205	3,905		
5/8	3-3/4	2,870	2,780	3,145	3,045	3,630	3,515	4,450	4,305	5,135	4,970		
3/4	4-3/8	3,620	4,210	3,965	4,615	4,575	5,330	5,605	6,525	6,470	7,535		
☐ - Concrete Breakout Strength Controls													

Tension and Shear Design Strengths for Power-Bolt+ in Uncracked Concrete^{1,2,3,4,5,6}

		Minimum Concrete Compressive Strength, f'c (psi)										
	Nominal Embed.	f'c = 2,500 psi		f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,000 psi		f'c = 8,000 psi		
Diameter (in.)	h _{nom} (in.)	₽Nn Tension (lbs.)	⊅ Vn Shear (lbs.)	⊕Nn Tension (lbs.)	⊅ Vn Shear (lbs.)	⊕Nn Tension (lbs.)	⊅ Vn Shear (lbs.)	⊕Nn Tension (lbs.)	⊅ Vn Shear (lbs.)	⊕Nn Tension (lbs.)	⊅ Vn Shear (lbs.)	
1/2	3-1/4	3,730	3,905	4,090	3,905	4,720	3,905	5,780	3,905	6,675	3,905	
5/8	3-3/4	4,560	3,890	4,995	4,260	5,770	4,920	7,065	6,025	8,155	6,960	
3/4	4-3/8	5,105	5,895	5,595	6,460	6,460	7,460	7,910	8,690	9,135	8,690	
☐ - Concrete Breakout Strength Controls												

- 1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, ha = hmin, and with the following conditions:
 - cat is greater than or equal to the critical edge distance, cac (table values based on cat = cac).
 - c_{a2} is greater than or equal to 1.5 times c_{a1} .
- 2- Calculations were performed according to ACI 318-14- Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (ø) were based on ACI 318-14 Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14- Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14- Chapter 17. For other design conditions including seismic considerations please see ACI 318-14- Chapter 17.



ORDERING INFORMATION

Power-Bolt+ (Carbon Steel Finished Hex Head)

Cat. No.	Anchor Size	Maximum Fixture Thickness	Box Qty.	Conton	Suggested ANSI Carbide Drill Bit Cat. No.					
				Carton Qty.	Full Head SDS-Plus	SDS-Plus	SDS-Max	Hollow Bit SDS-Plus	Hollow Bit SDS-Max	
6902SD	1/4" X 1-3/4"	1/2"	100	600	-	-	-	-	-	
6906SD	1/4" X 3"	1-3/4"	100	600	-	-	-	-	-	
6911SD	3/8" x 1-7/8"	1/4"	50	300	DW5527	DW5427	-	-	-	
6910SD	3/8" X 2-1/4"	1/4"	50	300	DW5527	DW5427	-	-	-	
6913SD	3/8" X 3"	1"	50	300	DW5527	DW5427	-	-	-	
6914SD	3/8" X 3-1/2"	1-1/2"	50	300	DW5527	DW5427	-	-	-	
6916SD	3/8" X 4"	2"	50	300	DW5527	DW5427	-	-	-	
6930SD	1/2" x 2-3/4"	1/4"	50	200	DW5537	DW5429	DW5803	DWA54012	-	
6932SD	1/2" x 3-1/2"	1/4"	50	200	DW5537	DW5429	DW5803	DWA54012	-	
6934SD	1/2" x 4-3/4"	1-1/2"	25	150	DW5537	DW5429	DW5803	DWA54012	-	
6936SD	1/2" x 5-3/4"	2-1/2"	25	150	DW5537	DW5429	DW5803	DWA54012	-	
6940SD	5/8" x 3"	1/4"	20	120	-	DW5446	DW5806	DWA54058	DWA5405	
6942SD	5/8" x 4"	1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA5405	
6944SD	5/8" x 5"	1-1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA5805	
6945SD	5/8" x 6"	2-1/4"	15	90	-	DW5446	DW5806	DWA54058	DWA5805	
6947SD	5/8" x 8-1/2"	4-3/4"	10	40	-	DW5447	DW5809	DWA54058	DWA5805	
6950SD	3/4" x 3-1/4"	1/4"	15	90	-	DW5453	DW5809	DWA54034	DWA5403	
6952SD	3/4" x 4-1/2"	1-1/2"	10	60	-	DW5453	DW5809	DWA54034	DWA5403	
6954SD	3/4" x 5-1/4"	7/8"	10	60	-	DW5453	DW5809	DWA54034	DWA5403	
6956SD	3/4" x 7-1/4"	2-7/8"	10	40	-	DW5453	DW5809	DWA54034	DWA5403	
6957SD	3/4" x 8-1/4"	3-7/8"	10	40	-	DW5455	DW5809	DWA54034	DWA5403	

The published size includes the diameter and the length which is measured from below the washer to the end of the anchor.

A manual hand pump is available (Cat. No. 08280)

Hollow drill bits must be used with a dust extraction vacuum (Cat. No. DW012)